High-Precision Symmetric Weight Update of Memristor by Gate Voltage Ramping Method for Convolutional Neural Network Accelerator

被引:37
作者
Chen, Jia [1 ]
Pan, Wen-Qian [1 ]
Li, Yi [1 ]
Kuang, Rui [1 ]
He, Yu-Hui [1 ]
Lin, Chih-Yang [2 ]
Duan, Nian [1 ]
Feng, Gui-Rong [1 ]
Zheng, Hao-Xuan [2 ]
Chang, Ting-Chang [2 ]
Sze, Simon M. [3 ]
Miao, Xiang-Shui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan
[3] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu 300, Taiwan
基金
中国国家自然科学基金;
关键词
Memristor; symmetric weight update; convolutional neural network; MEMORY; CLASSIFICATION;
D O I
10.1109/LED.2020.2968388
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Memristor emerges as the key enabler for neural network accelerator. Here, we demonstrate high-precision symmetric weight update in a one transistor one resistor (1T1R) structure Ti/HfO2/TiN memristor using a gate voltage ramping method, with over 120-level states and low variation (< 4%). Incorporating all experimental non-idealities, the proposed mixed hardware-software convolutional neural network demonstrates over 92.79% online learning accuracy (against software equivalent 98.45%) for MNIST recognition task. The network also shows robustness to input image noises, array yield, and retention issues.
引用
收藏
页码:353 / 356
页数:4
相关论文
共 30 条
[1]  
Agarwal S, 2016, IEEE IJCNN, P929, DOI 10.1109/IJCNN.2016.7727298
[2]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[3]   Neuromorphic Learning and Recognition With One-Transistor-One-Resistor Synapses and Bistable Metal Oxide RRAM [J].
Ambrogio, Stefano ;
Balatti, Simone ;
Milo, Valerio ;
Carboni, Roberto ;
Wang, Zhong-Qiang ;
Calderoni, Alessandro ;
Ramaswamy, Nirmal ;
Ielmini, Daniele .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (04) :1508-1515
[4]   Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits [J].
Bayat, F. Merrikh ;
Prezioso, M. ;
Chakrabarti, B. ;
Nili, H. ;
Kataeva, I. ;
Strukov, D. .
NATURE COMMUNICATIONS, 2018, 9
[5]  
Chang CC, 2017, INT EL DEVICES MEET
[6]   LiSiOX-Based Analog Memristive Synapse for Neuromorphic Computing [J].
Chen, Jia ;
Lin, Chih-Yang ;
Li, Yi ;
Qin, Chao ;
Lu, Ke ;
Wang, Jie-Ming ;
Chen, Chun-Kuei ;
He, Yu-Hui ;
Chang, Ting-Chang ;
Sze, Simon M. ;
Miao, Xiang-Shui .
IEEE ELECTRON DEVICE LETTERS, 2019, 40 (04) :542-545
[7]   SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations [J].
Choi, Shinhyun ;
Tan, Scott H. ;
Li, Zefan ;
Kim, Yunjo ;
Choi, Chanyeol ;
Chen, Pai-Yu ;
Yeon, Hanwool ;
Yu, Shimeng ;
Kim, Jeehwan .
NATURE MATERIALS, 2018, 17 (04) :335-+
[8]   Perspective on training fully connected networks with resistive memories: Device requirements for multiple conductances of varying significance [J].
Cristiano, Giorgio ;
Giordano, Massimo ;
Ambrogio, Stefano ;
Romero, Louis P. ;
Cheng, Christina ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Burr, Geoffrey W. .
JOURNAL OF APPLIED PHYSICS, 2018, 124 (15)
[9]   Light-tuned selective photosynthesis of azo- and azoxy-aromatics using graphitic C3N4 [J].
Dai, Yitao ;
Li, Chao ;
Shen, Yanbin ;
Lim, Tingbin ;
Xu, Jian ;
Li, Yongwang ;
Niemantsverdriet, Hans ;
Besenbacher, Flemming ;
Lock, Nina ;
Su, Ren .
NATURE COMMUNICATIONS, 2018, 9
[10]   Demonstration of Convolution Kernel Operation on Resistive Cross-Point Array [J].
Gao, Ligang ;
Chen, Pai-Yu ;
Yu, Shimeng .
IEEE ELECTRON DEVICE LETTERS, 2016, 37 (07) :870-873