ON JET LIKE BUNDLES OF VECTOR BUNDLES

被引:0
|
作者
Doupovec, Miroslav [1 ]
Kurek, Jan [2 ]
Mikulski, Wlodzimierz M. [3 ]
机构
[1] Brno Univ Technol, Inst Math, Tech 2, Brno 61669, Czech Republic
[2] Marie Curie Sklodowska Univ, Inst Math, Pl Marii Curie Sklodowskiej 1, Lublin, Poland
[3] Jagiellonian Univ, Inst Math, Lojasiewicza 6, Krakow, Poland
来源
MATEMATICKI VESNIK | 2021年 / 73卷 / 04期
关键词
Bundle functor; gauge bundle functor; natural transformation; (gauge) natural operator; vector bundle; module bundle; jet;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe completely the so called jet like functors of a vector bundle E over an m-dimensional manifold M, i.e. bundles FE over M canonically depending on E such that F(E-1 x(M) E-2) = FE1 x(M) FE2 for any vector bundles E-l and E-2 over M. Then we study how a linear vector field on E can induce canonically a vector field on FE.
引用
收藏
页码:243 / 255
页数:13
相关论文
共 50 条
  • [21] On vector bundles of finite order
    Mario Maican
    manuscripta mathematica, 2007, 124 : 97 - 137
  • [22] AFFINE STRUCTURES ON JET AND WEIL BUNDLES
    Blazquez-Sanz, David
    COLLOQUIUM MATHEMATICUM, 2009, 114 (02) : 291 - 305
  • [23] VECTOR BUNDLES OVER A NONDEGENERATE CONIC
    Biswas, Indranil
    Nagaraj, D. S.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 86 (02) : 145 - 154
  • [24] On a Lie Algebraic Characterization of Vector Bundles
    Lecomte, Pierre B. A.
    Leuther, Thomas
    Mushengezi, Elie Zihindula
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
  • [25] ON MAXIMALLY FROBENIUS DESTABILISED VECTOR BUNDLES
    Li, Lingguang
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (02) : 195 - 202
  • [26] ON THE GEOMETRY OF VECTOR BUNDLES WITH FLAT CONNECTIONS
    Abbassi, Mohamed Tahar Kadaoui
    Lakrini, Ibrahim
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (05) : 1219 - 1233
  • [27] Fibonacci, Golden Ratio, and Vector Bundles
    Giansiracusa, Noah
    MATHEMATICS, 2021, 9 (04) : 1 - 5
  • [28] VECTOR BUNDLES AND PARACONTACT FINSLER STRUCTURES
    Peyghan, Esmaeil
    Sharahi, Esa
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (02): : 231 - 254
  • [29] Classical vector bundles and representations of quivers
    Dowbor, P
    Meltzer, H
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2005, 11 (02): : 205 - 220
  • [30] Vector bundles on rational homogeneous spaces
    Du, Rong
    Fang, Xinyi
    Gao, Yun
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (06) : 2797 - 2827