Biclustering expression data using node addition algorithm

被引:0
|
作者
Borah, B. [1 ]
Bhattacharyya, D. K. [1 ]
机构
[1] Tezpur Univ, Dept Comp Sci & Engn, Tezpur 784028, India
关键词
D O I
10.1109/ADCOM.2007.122
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Biclustering algorithms simultaneously cluster both rows and columns. This type of algorithms are applied to gene expression data analysis to find a subset of genes that exhibit similar expression pattern under a subset of conditions. Cheng and Church introduced the mean squared residue measure to capture the coherence of a subset of genes over a subset of conditions. They provided a set of heuristic algorithms based primarily on node deletion to find one bicluster or a set of biclusters after masking discovered biclusters with random values. Masking of discovered biclusters with random values interferes with discovery of high quality biclusters. We provide an efficient node addition algorithm to find a set of biclusters without the need of masking discovered biclusters. Initialized with a gene and a subset of conditions, a bicluster is extended by adding more genes and conditions. Thus it provides facility to study individual genes, besides generating a large number of biclusters with different initializations. Biclusters with lower or higher scores within a specified limit can be generated by parameter setting. Use of incremental method of computing score makes the algorithm faster.
引用
收藏
页码:307 / 312
页数:6
相关论文
共 50 条
  • [31] HiBi - The Algorithm of Biclustering the Discrete Data
    Michalak, Marcin
    Lachor, Magdalena
    Polanski, Andrzej
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2014, PT II, 2014, 8468 : 760 - 771
  • [32] Biclustering Gene Expression Data using MSR Difference Threshold
    Das, Shyama
    Idicula, Sumam Mary
    2009 ANNUAL IEEE INDIA CONFERENCE (INDICON 2009), 2009, : 430 - +
  • [33] Identification of Regulatory Modules in Time Series Gene Expression Data Using a Linear Time Biclustering Algorithm
    Madeira, Sara C.
    Teixeira, Miguel C.
    Sa-Correia, Isabel
    Oliveira, Arlindo L.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2010, 7 (01) : 153 - 165
  • [34] Identification of coherent patterns in gene expression data using an efficient biclustering algorithm and parallel coordinate visualization
    Kin-On Cheng
    Ngai-Fong Law
    Wan-Chi Siu
    Alan Wee-Chung Liew
    BMC Bioinformatics, 9
  • [35] A New Biclustering Algorithm for Time-Series Gene Expression Data Analysis
    Xue, Yun
    Liao, Zhengling
    Li, Meihang
    Luo, Jie
    Hu, Xiaohui
    Luo, Guiyin
    Chen, Wen-Sheng
    2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 268 - 272
  • [36] Improving an Evolutionary Multi-objective Algorithm for the Biclustering of Gene Expression Data
    Brizuela, Carlos A.
    Luna-Taylor, Jorge E.
    Martinez-Perez, Israel
    Guillen, Hugo A.
    Rodriguez, David O.
    Beltran-Verdugo, Armando
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 221 - 228
  • [37] ARBic: an all-round biclustering algorithm for analyzing gene expression data
    Liu, Xiangyu
    Yu, Ting
    Zhao, Xiaoyu
    Long, Chaoyi
    Han, Renmin
    Su, Zhengchang
    Li, Guojun
    NAR GENOMICS AND BIOINFORMATICS, 2023, 5 (01)
  • [38] Biclustering of Gene Expression Data Based on Binary Artificial Fish Swarm Algorithm
    Zhang, Rui
    Gao, Huacheng
    Liu, Yinqiu
    Lu, Yuanyuan
    Cui, Yan
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 247 - 251
  • [39] Bayesian biclustering of gene expression data
    Jiajun Gu
    Jun S Liu
    BMC Genomics, 9
  • [40] Biclustering in gene expression data by tendency
    Liu, JZ
    Yang, J
    Wang, W
    2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 182 - 193