Approximate quantum Fourier transform with O(n log(n)) T gates

被引:40
|
作者
Nam, Yunseong [1 ]
Su, Yuan [2 ,3 ]
Maslov, Dmitri [4 ]
机构
[1] IonQ, College Pk, MD 20740 USA
[2] Univ Maryland, Dept Comp Sci, Inst Adv Comp Studies, College Pk, MD 20740 USA
[3] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20740 USA
[4] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
美国国家科学基金会;
关键词
ALGORITHM; CLIFFORD;
D O I
10.1038/s41534-020-0257-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ability to implement the Quantum Fourier Transform (QFT) efficiently on a quantum computer facilitates the advantages offered by a variety of fundamental quantum algorithms, such as those for integer factoring, computing discrete logarithm over Abelian groups, solving systems of linear equations, and phase estimation, to name a few. The standard fault-tolerant implementation of an n-qubit unitary QFT approximates the desired transformation by removing small-angle controlled rotations and synthesizing the remaining ones into Clifford+T gates, incurring the T-count complexity of O(nlog2(n)). In this paper, we show how to obtain approximate QFT with the T-count of O(nlog(n)). For brevity, the above figures omit the dependence on the approximation error epsilon, assuming the error is fixed. Our approach relies on quantum circuits with measurements and feedforward, and on reusing a special quantum state that induces the phase gradient transformation. We report asymptotic analysis as well as concrete circuits, demonstrating significant advantages in both theory and practice.
引用
收藏
页数:6
相关论文
共 28 条
  • [1] Paired quantum Fourier transform with log2N Hadamard gates
    Grigoryan, Artyom M.
    Agaian, Sos S.
    QUANTUM INFORMATION PROCESSING, 2019, 18 (07)
  • [2] t-bit semiclassical quantum Fourier transform
    Fu XiangQun
    Bao WanSu
    Zhou Chun
    Song Zhen
    CHINESE SCIENCE BULLETIN, 2012, 57 (01): : 119 - 124
  • [3] Planning TS trajectory using MLAT in o(n log n)
    Ophir, Dan
    Davidovitch, Ahiya
    2019 12TH INTERNATIONAL WORKSHOP ON ROBOT MOTION AND CONTROL (ROMOCO '19), 2019, : 223 - 230
  • [4] An O(n log n)-time algorithm for the restriction scaffold assignment problem
    Colannino, Justin
    Damian, Mirela
    Hurtado, Ferran
    Iacono, John
    Meijer, Henk
    Ramaswami, Suneeta
    Toussaint, Godfried
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (04) : 979 - 989
  • [5] Computing Smallest and Largest Repetition Factorizations in O(n log n) Time
    Inoue, Hiroe
    Matsuoka, Yoshiaki
    Nakashima, Yuto
    Inenaga, Shunsuke
    Bannai, Hideo
    Takeda, Masayuki
    PROCEEDINGS OF THE PRAGUE STRINGOLOGY CONFERENCE 2016, 2016, : 135 - 145
  • [6] Polynomial Multiplication over Finite Fields in Time O(n log n)
    Harvey, David
    van der Hoeven, Joris
    JOURNAL OF THE ACM, 2022, 69 (02)
  • [7] Bisimilarity Minimization in O(m log n) Time
    Valmari, Antti
    APPLICATIONS AND THEORY OF PETRI NETS, PROCEEDINGS, 2009, 5606 : 123 - 142
  • [8] Simple Bisimilarity Minimization in O(m log n) Time
    Valmari, Antti
    FUNDAMENTA INFORMATICAE, 2010, 105 (03) : 319 - 339
  • [9] Calibration schemes with O(N log N) scaling for large-N radio interferometers built on a regular grid
    Gorthi, Deepthi B.
    Parsons, Aaron R.
    Dillon, Joshua S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 500 (01) : 66 - 81
  • [10] Constructing a cactus for minimum cuts of a graph in O (mn+n2 log n) time and O(m) Space
    Nagamochi, H
    Nakamura, S
    Ishii, T
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (02): : 179 - 185