Valley coherent exciton-polaritons in a monolayer semiconductor

被引:81
作者
Dufferwiel, S. [1 ]
Lyons, T. P. [1 ]
Solnyshkov, D. D. [2 ]
Trichet, A. A. P. [3 ]
Catanzaro, A. [1 ]
Withers, F. [4 ]
Malpuech, G. [2 ]
Smith, J. M. [3 ]
Novoselov, K. S. [5 ]
Skolnick, M. S. [1 ]
Krizhanovskii, D. N. [1 ]
Tartakovskii, A. I. [1 ]
机构
[1] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England
[2] Univ Clermont Auvergne, Inst Pascal, PHOTON N2, CNRS,SIGMA Clermont, F-63000 Clermont Ferrand, France
[3] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[4] Univ Exeter, Ctr Graphene Sci, CEMPS, Exeter EX4 4QF, Devon, England
[5] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
WSE2; SPIN; POLARIZATION; MOS2; WS2;
D O I
10.1038/s41467-018-07249-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two-dimensional transition metal dichalcogenides (TMDs) provide a unique possibility to generate and read-out excitonic valley coherence using linearly polarized light, opening the way to valley information transfer between distant systems. However, these excitons have short lifetimes (ps) and efficiently lose their valley coherence via the electron-hole exchange interaction. Here, we show that control of these processes can be gained by embedding a monolayer of WSe2 in an optical microcavity, forming part-light-part-matter exciton-polaritons. We demonstrate optical initialization of valley coherent polariton populations, exhibiting luminescence with a linear polarization degree up to 3 times higher than displayed by bare excitons. We utilize an external magnetic field alongside selective exciton-cavity-mode detuning to control the polariton valley pseudospin vector rotation, which reaches 45 degrees at B = 8 T. This work provides unique insight into the decoherence mechanisms in TMDs and demonstrates the potential for engineering the valley pseudospin dynamics in monolayer semiconductors embedded in photonic structures.
引用
收藏
页数:7
相关论文
共 31 条
[1]   Magnetic control of valley pseudospin in monolayer WSe2 [J].
Aivazian, G. ;
Gong, Zhirui ;
Jones, Aaron M. ;
Chu, Rui-Lin ;
Yan, J. ;
Mandrus, D. G. ;
Zhang, Chuanwei ;
Cobden, David ;
Yao, Wang ;
Xu, X. .
NATURE PHYSICS, 2015, 11 (02) :148-152
[2]   Quantum fluids of light [J].
Carusotto, Iacopo ;
Ciuti, Cristiano .
REVIEWS OF MODERN PHYSICS, 2013, 85 (01) :299-366
[3]  
Chen YJ, 2017, NAT PHOTONICS, V11, P431, DOI [10.1038/nphoton.2017.86, 10.1038/NPHOTON.2017.86]
[4]  
Dufferwiel S, 2017, NAT PHOTONICS, V11, P497, DOI [10.1038/nphoton.2017.125, 10.1038/NPHOTON.2017.125]
[5]   Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities [J].
Dufferwiel, S. ;
Schwarz, S. ;
Withers, F. ;
Trichet, A. A. P. ;
Li, F. ;
Sich, M. ;
Del Pozo-Zamudio, O. ;
Clark, C. ;
Nalitov, A. ;
Solnyshkov, D. D. ;
Malpuech, G. ;
Novoselov, K. S. ;
Smith, J. M. ;
Skolnick, M. S. ;
Krizhanovskii, D. N. ;
Tartakovskii, A. I. .
NATURE COMMUNICATIONS, 2015, 6
[6]   Strong exciton-photon coupling in open semiconductor microcavities [J].
Dufferwiel, S. ;
Fras, F. ;
Trichet, A. ;
Walker, P. M. ;
Li, F. ;
Giriunas, L. ;
Makhonin, M. N. ;
Wilson, L. R. ;
Smith, J. M. ;
Clarke, E. ;
Skolnick, M. S. ;
Krizhanovskii, D. N. .
APPLIED PHYSICS LETTERS, 2014, 104 (19)
[7]   Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides [J].
Glazov, M. M. ;
Amand, T. ;
Marie, X. ;
Lagarde, D. ;
Bouet, L. ;
Urbaszek, B. .
PHYSICAL REVIEW B, 2014, 89 (20)
[8]  
Hao K, 2016, NAT PHYS, V12, P677, DOI [10.1038/nphys3674, 10.1038/NPHYS3674]
[9]  
Jones AM, 2013, NAT NANOTECHNOL, V8, P634, DOI [10.1038/NNANO.2013.151, 10.1038/nnano.2013.151]
[10]   Optical spin Hall effect [J].
Kavokin, A ;
Malpuech, G ;
Glazov, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (13)