Multiple Tree Model Integration for Transportation Mode Recognition

被引:6
作者
Ren, Yan [1 ]
机构
[1] Renmin Univ China, Beijing, Peoples R China
来源
UBICOMP/ISWC '21 ADJUNCT: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2021 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS | 2021年
关键词
Transportation Mode Recognition; LightGBM; Random Forest; Bagging; Ensemble;
D O I
10.1145/3460418.3479372
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The team RY presents a solution for Sussex-Huawei Locomotion-Transportation (SHL) recognition challenge, which aims at differentiating eight transportation modes with mobile phone signal sensor data in this paper. This study first extracted a set of reasonable and discriminative features after data-preprocessing. Then, decision tree bagging, random forest, lightGBM are trained separately as basic models, whose predictions are integrated and afterward smoothed. The method gets 0.65 accuracy score on validation dataset.
引用
收藏
页码:385 / 389
页数:5
相关论文
共 16 条
[1]   Smartphone Transportation Mode Recognition Using a Hierarchical Machine Learning Classifier and Pooled Features From Time and Frequency Domains [J].
Ashqar, Huthaifa, I ;
Almannaa, Mohammed H. ;
Elhenawy, Mohammed ;
Rakha, Hesham A. ;
House, Leanna .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (01) :244-252
[2]  
Elhoushi M, 2014, I NAVIG SAT DIV INT, P1768
[3]  
Elhoushi M, 2014, IEEE POSITION LOCAT, P158, DOI 10.1109/PLANS.2014.6851370
[4]   Transportation mode recognition using GPS and accelerometer data [J].
Feng, Tao ;
Timmermans, Harry J. P. .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2013, 37 :118-130
[5]   The University of Sussex-Huawei Locomotion and Transportation Dataset for Multimodal Analytics With Mobile Devices [J].
Gjoreski, Hristijan ;
Ciliberto, Mathias ;
Wang, Lin ;
Morales, Francisco Javier Ordonez ;
Mekki, Sami ;
Valentin, Stefan ;
Roggen, Daniel .
IEEE ACCESS, 2018, 6 :42592-42604
[6]   Deep Convolutional Bidirectional LSTM Based Transportation Mode Recognition [J].
Jeyakumar, Jeya Vikranth ;
Sun Lee, Eun ;
Xia, Zhengxu ;
Sandha, Sandeep Singh ;
Tausik, Nathan ;
Srivastava, Mani .
PROCEEDINGS OF THE 2018 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS (UBICOMP/ISWC'18 ADJUNCT), 2018, :1606-1615
[7]   Automatic Transportation Mode Recognition on Smartphone Data Based on Deep Neural Networks [J].
Priscoli, Francesco Delli ;
Giuseppi, Alessandro ;
Lisi, Federico .
SENSORS, 2020, 20 (24) :1-16
[8]   Using Mobile Phones to Determine Transportation Modes [J].
Reddy, Sasank ;
Mun, Min ;
Burke, Jeff ;
Estrin, Deborah ;
Hansen, Mark ;
Srivastava, Mani .
ACM TRANSACTIONS ON SENSOR NETWORKS, 2010, 6 (02)
[9]   Trip mode recognition using smartphone sensor data under different sampling frequencies [J].
Shen, Jian ;
Jiang, Haihang ;
Yang, Fei ;
Yao, Zhenxing .
WEB INTELLIGENCE, 2019, 17 (02) :151-160
[10]  
Wang L., P 2021 ACM INT JOINT