共 50 条
Use of micro-computed tomography imaging and porosity measurements as indicators of collagen preservation in archaeological bone
被引:21
|作者:
Tripp, Jennifer A.
[1
]
Squire, Maria E.
[2
]
Hedges, Robert E. M.
[3
]
Stevens, Rhiannon E.
[1
]
机构:
[1] UCL, Inst Archaeol, 31-34 Gordon Sq, London WC1H 0PY, England
[2] Univ Scranton, Dept Biol, Scranton, PA 18510 USA
[3] Univ Oxford, Res Lab Archaeol, Oxford, England
基金:
美国国家科学基金会;
欧洲研究理事会;
关键词:
Micro-computed tomography;
Light-induced breakdown spectroscopy;
BET nitrogen adsorption;
Mercury porosimetry;
Bone diagenesis;
Cortical porosity;
Bone collagen;
Radiocarbon dating;
Stable isotope analysis;
INFRARED-SPECTROSCOPY;
DIAGENETIC ALTERATION;
IONIZING-RADIATION;
RAMAN-SPECTROSCOPY;
ISOTOPE ANALYSIS;
X-RAY;
CT;
DEGRADATION;
ADSORPTION;
FLUORINE;
D O I:
10.1016/j.palaeo.2018.09.012
中图分类号:
P9 [自然地理学];
学科分类号:
0705 ;
070501 ;
摘要:
Collagen isolated from archaeological bone is a common material for radiocarbon dating, stable isotope analysis, and zooarchaeology by mass spectrometry (ZooMS). However, not all bones contain extant collagen, leading to unnecessary destruction of unproductive bones and wasted laboratory time and resources. An aim of this research is to study bone diagenesis, particularly collagen destruction, in an effort to develop a minimally destructive method for identifying bones with high collagen content. Ina multi-method study of variably preserved bones from Etton, Cambridgeshire, UK, we examined material properties of Neolithic cattle and sheep bones including porosity, surface area, and elemental composition. Micro-computed tomography (microCT) is an imaging technique that furnishes three-dimensional images of mineralized materials such as bone. Cortical bone porosity, the percentage of total bone volume consisting of empty space as calculated using microCT, can act as a proxy for bone collagen preservation. In general, bones with high cortical porosity are unlikely to contain sufficient collagen for further analysis. Bones with apparently low cortical porosity have a more varied range of collagen preservation. Bone samples with low porosity and no extant collagen often contain micropores with a diameter of 10 nm or less that cannot be seen in microCT images but are apparent in pore size distributions measured by mercury porosimetry, and indicated by high surface areas measured by nitrogen adsorption. Furthermore, a re-evaluation of light-induced breakdown spectroscopy data from this same assemblage confirms that ratios of calcium to fluorine may likewise indicate the state of diagenesis.
引用
收藏
页码:462 / 471
页数:10
相关论文