Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa)

被引:40
|
作者
Tian, N. [1 ]
Wang, J. [2 ]
Xu, Z. Q. [1 ]
机构
[1] NW Univ Xian, Key Lab Resource Biol & Biotechnol Western China, Prov Key Lab Biotechnol Shaanxi Prov, Inst Life Sci,Minist Educ, Xian 710069, Shaanxi, Peoples R China
[2] Ankang Univ, Coll Agr & Life Sci, Ankang 725000, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Actinidia deliciosa; Agrobacterium tumefaciens; AtNHX1; Salt tolerance; MOLECULAR-CLONING; VITAMIN-C; EXPRESSION; PLANTS; ESTABLISHMENT; TRANSPORT; SYSTEM; TISSUE; FRUITS;
D O I
10.1016/j.sajb.2010.07.010
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salinity is the main limiting factor of plant growth and agricultural productivity. A lot of previous works showed that the introduction of Na+/H+ antiporter gene could improve the tolerance of plants to salt. In this study, a vacuolar Na+/H+ antiporter gene, AtNHX1 from Arobidopsis, was transferred into kiwifruit by Agrobacterium-mediated protocol. Polymerase chain reaction (PCR) and Southern blot analysis confirmed that AtNHX1 was successfully integrated into the kiwifruit genome. Reverse transcription (RT)-PCR analysis indicated that AtNHX1 expressed highly in transgenic plants. It was found that transgenic kiwifruit plants exhibited improved resistance to 200 mmol/l NaCl in comparison with wide-type plants. Under salt stress, these transgenic lines accumulated more Na+ than control, due to an increased Na+/H+ antiporter activity. In physiological analysis, the traits such as osmotic adjustment and antioxidation capability of transgenic lines under salt stress were obviously higher than that of wide-type plants. These results suggested that the overexpression of vacuolar Na+/H+ antiporter gene could increase the salt tolerance of kiwifruit. (C) 2010 SAAB. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:160 / 169
页数:10
相关论文
共 50 条
  • [21] Overexpression of Arabidopsis thaliana Na+/H+ antiporter gene enhanced salt resistance in transgenic poplar (Populus x euramericana 'Neva')
    Jiang, Chaoqiang
    Zheng, Qingsong
    Liu, Zhaopu
    Xu, Wenjun
    Liu, Ling
    Zhao, Gengmao
    Long, Xiaohua
    TREES-STRUCTURE AND FUNCTION, 2012, 26 (03): : 685 - 694
  • [22] Enhanced V-ATPase activity contributes to the improved salt tolerance of transgenic tobacco plants overexpressing vacuolar Na+/H+ antiporter AtNHX1
    Shufeng Zhou
    Zhiming Zhang
    Qilin Tang
    Hai Lan
    Yinxin Li
    Ping Luo
    Biotechnology Letters, 2011, 33 : 375 - 380
  • [23] Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana
    Q. Wei
    Y. J. Guo
    H. M. Cao
    B. K. Kuai
    Plant Cell, Tissue and Organ Culture (PCTOC), 2011, 105 : 309 - 316
  • [24] Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance
    Li, Yonghong
    Zhang, Yanzi
    Feng, Fengjuan
    Liang, Dong
    Cheng, Lailiang
    Ma, Fengwang
    Shi, Shouguo
    PLANT CELL TISSUE AND ORGAN CULTURE, 2010, 102 (03) : 337 - 345
  • [25] Overexpression of Iris lactea tonoplast Na+/H+ antiporter gene IlNHX confers improved salt tolerance in tobacco
    Guo, Q.
    Tian, X. X.
    Mao, P. C.
    Meng, L.
    BIOLOGIA PLANTARUM, 2020, 64 : 50 - 57
  • [26] Overexpression of a tonoplast Na+/H+ antiporter from the halophytic shrub Nitraria sibirica improved salt tolerance and root development in transgenic poplar
    Geng, Xin
    Chen, Shouye
    Yilan, E.
    Zhang, Wenbo
    Mao, Huiping
    Qiqige, Alatan
    Wang, Yingchun
    Qi, Zhi
    Lin, Xiaofei
    TREE GENETICS & GENOMES, 2020, 16 (06)
  • [27] AtNHX3 is a vacuolar K+/H+ antiporter required for low-potassium tolerance in Arabidopsis thaliana
    Liu, Hua
    Tang, Renjie
    Zhang, Yue
    Wang, Cuiting
    Lv, Qundan
    Gao, Xiaoshu
    Li, Wenbin
    Zhang, Hongxia
    PLANT CELL AND ENVIRONMENT, 2010, 33 (11) : 1989 - 1999
  • [28] Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice
    Chen, Hui
    An, Rui
    Tang, Jiang-Hua
    Cui, Xiang-Huan
    Hao, Fu-Shun
    Chen, Jia
    Wang, Xue-Chen
    MOLECULAR BREEDING, 2007, 19 (03) : 215 - 225
  • [29] Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice
    Hui Chen
    Rui An
    Jiang-Hua Tang
    Xiang-Huan Cui
    Fu-Shun Hao
    Jia Chen
    Xue-Chen Wang
    Molecular Breeding, 2007, 19 : 215 - 225
  • [30] The Vacuolar Na+/H+ Antiporter Gene SsNHX1 from the Halophyte Salsola soda Confers Salt Tolerance in Transgenic Alfalfa (Medicago sativa L.)
    Li, Wangfeng
    Wang, Deli
    Jin, Taicheng
    Chang, Qing
    Yin, Dongxu
    Xu, Shoumin
    Liu, Bao
    Liu, Lixia
    PLANT MOLECULAR BIOLOGY REPORTER, 2011, 29 (02) : 278 - 290