Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

被引:23
作者
Bu, Xinxin [1 ]
Jia, Fengqi [1 ]
Wang, Weifeng [1 ]
Guo, Xianling [1 ]
Wu, Mengchao [1 ]
Wei, Lixin [1 ]
机构
[1] Second Mil Med Univ, Eastern Hepatobiliary Hosp, Tumor Immunol & Gene Therapy Ctr, Shanghai 200438, Peoples R China
关键词
P70; S6; KINASE; MESSENGER-RNA TRANSLATION; MAMMALIAN TARGET; RAPAMYCIN; EXPRESSION; PROTEIN; GROWTH; INHIBITION; 3-KINASE; FKBP12;
D O I
10.1186/1471-2407-7-208
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. Methods: This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p-p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Results: Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT ( the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. Conclusion: These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Identification of TOR signaling complexes: more TORC for the cell growth engine [J].
Abraham, RT .
CELL, 2002, 111 (01) :9-12
[2]   Oncogenic kinase signalling [J].
Blume-Jensen, P ;
Hunter, T .
NATURE, 2001, 411 (6835) :355-365
[3]   Cell cycle protein expression in vascular smooth muscle cells in vitro and in vivo is regulated through phosphatidylinositol 3-kinase and mammalian target of rapamycin [J].
Braun-Dullaeus, RC ;
Mann, MJ ;
Seay, U ;
Zhang, LN ;
von der Leyen, HE ;
Morris, RE ;
Dzau, VJ .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2001, 21 (07) :1152-1158
[4]   A MAMMALIAN PROTEIN TARGETED BY G1-ARRESTING RAPAMYCIN-RECEPTOR COMPLEX [J].
BROWN, EJ ;
ALBERS, MW ;
SHIN, TB ;
ICHIKAWA, K ;
KEITH, CT ;
LANE, WS ;
SCHREIBER, SL .
NATURE, 1994, 369 (6483) :756-758
[5]   CONTROL OF P70 S6 KINASE BY KINASE-ACTIVITY OF FRAP IN-VIVO [J].
BROWN, EJ ;
BEAL, PA ;
KEITH, CT ;
CHEN, J ;
SHIN, TB ;
SCHREIBER, SL .
NATURE, 1995, 377 (6548) :441-446
[6]   RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1 [J].
Burnett, PE ;
Barrow, RK ;
Cohen, NA ;
Snyder, SH ;
Sabatini, DM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (04) :1432-1437
[7]  
Castedo M, 2002, CELL DEATH DIFFER, V9, P99, DOI 10.1038/sj/cdd/4400978
[8]   RAPT1, A MAMMALIAN HOMOLOG OF YEAST TOR, INTERACTS WITH THE FKBP12 RAPAMYCIN COMPLEX [J].
CHIU, MI ;
KATZ, H ;
BERLIN, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (26) :12574-12578
[9]   The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase [J].
Choi, JH ;
Bertram, PG ;
Drenan, R ;
Carvalho, J ;
Zhou, HH ;
Zheng, XFS .
EMBO REPORTS, 2002, 3 (10) :988-994
[10]   Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase [J].
Counter, CM ;
Meyerson, M ;
Eaton, EN ;
Ellisen, LW ;
Caddle, SD ;
Haber, DA ;
Weinberg, RA .
ONCOGENE, 1998, 16 (09) :1217-1222