Temporal decay of strong solutions to the magnetohydrodynamics with power-law type nonlinear viscous fluid

被引:4
|
作者
Kim, Jae-Myoung [1 ]
机构
[1] Andong Natl Univ, Dept Math Educ, Andong 36729, South Korea
关键词
LARGE-TIME BEHAVIOR; NAVIER-STOKES; EQUATIONS; SYSTEM;
D O I
10.1063/1.5128708
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the energy norm of strong solutions to the power-law type magnetohydrodynamics in three dimensions has a decay rate of t-34. Published under license by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Temporal decay of strong solutions for generalized Newtonian fluids with variable power-law index
    Ko, Seungchan
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (04)
  • [2] Analytical solutions of the boundary layer flow of power-law fluid over a power-law stretching surface
    Jalil, Mudassar
    Asghar, Saleem
    Mushtaq, Muhammad
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (05) : 1143 - 1150
  • [3] Power-law Photoluminescence Decay in Quantum Dots
    Kral, Karel
    Mensik, Miroslav
    7TH INTERNATIONAL CONFERENCE ON LOW DIMENSIONAL STRUCTURES AND DEVICES (LDSD 2011), 2014, 1598 : 87 - 90
  • [4] The Cauchy Problem for the Incompressible 2D-MHD with Power Law-Type Nonlinear Viscous Fluid
    Kim, Jae-Myoung
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [5] Existence, uniqueness and decay rates of a certain type of 3D Hall-MHD equations with power-law type
    Kim, Jae-Myoung
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (02)
  • [6] MHD flow of power-law fluid on moving surface with power-law velocity and special injection/blowing
    Chen, Xue-hui
    Zheng, Lian-cun
    Zhang, Xin-xin
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2014, 35 (12) : 1555 - 1564
  • [7] Multidimensional exact solutions to the reaction-diffusion system with power-law nonlinear terms
    Kosov, A. A.
    Semenov, E. I.
    SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (04) : 619 - 632
  • [8] Coupling Effects of Viscous Sheet and Ambient Fluid on Boundary Layer Flow and Heat Transfer in Power-Law Fluids
    Liu, Xiaochuan
    Zheng, Liancun
    Chen, Goong
    Ma, Lianxi
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2019, 141 (06):
  • [9] Nonlinear Dynamics of Cattaneo-Christov Heat Flux Model for Third-Grade Power-Law Fluid
    Sharma, Bhuvnesh
    Kumar, Sunil
    Cattani, Carlo
    Baleanu, Dumitru
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2020, 15 (01):
  • [10] Optimal temporal decay rates for 3D compressible magnetohydrodynamics system with nonlinear damping
    Zeng, Ruixin
    Fu, Shengbin
    Wang, Weiwei
    APPLIED MATHEMATICS LETTERS, 2024, 156