Riemann-Hilbert problems and soliton solutions for a multi-component cubic-quintic nonlinear Schrodinger equation

被引:12
|
作者
Zhang, Yong [1 ]
Dong, Huan-He [1 ]
Wang, Deng-Shan [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Multi-component cubic-quintic nonlinear; Schrodinger equation; Integrable hierarchy; Riemann-Hilbert problem; Soliton solution; INVERSE SCATTERING TRANSFORM; SEMIDIRECT SUMS; MKDV SYSTEM; INTEGRABILITY; EVOLUTION; WAVES;
D O I
10.1016/j.geomphys.2019.103569
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the zero curvature equation, an arbitrary order matrix spectral problem is studied and its associated multi-component cubic-quintic nonlinear Schrodinger integrable hierarchy is derived. In order to solve the multi-component cubic-quintic nonlinear Schrodinger system, a class of Riemann-Hilbert problem is proposed with appropriate transformation. Through the special Riemann-Hilbert problem, where the jump matrix is considered to be an identity matrix, the soliton solutions of all integrable equations are explicitly calculated. The specific examples of one-soliton, two-soliton and N-soliton solutions are explicitly presented. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] The Soliton Scattering of the Cubic-Quintic Nonlinear Schrodinger Equation on the External Potentials
    Aklan, Nor Amirah Busul
    Umarov, Bakhram
    22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682
  • [12] New exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Peng, Yan-Ze
    Krishnan, E. V.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (02) : 243 - 252
  • [13] Soliton solutions of higher order dispersive cubic-quintic nonlinear Schrodinger equation and its applications
    Sultan, Abdul Malik
    Lu, Dianchen
    Arshad, Muhammad
    Rehman, Hamood Ur
    Saleem, Muhammad Shoaib
    CHINESE JOURNAL OF PHYSICS, 2020, 67 : 405 - 413
  • [14] Optical quasi-soliton solutions for the cubic-quintic nonlinear Schrodinger equation with variable coefficients
    Yang, Q
    Zhang, JF
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (31): : 4629 - 4636
  • [15] Optical soliton solutions for the higher-order dispersive cubic-quintic nonlinear Schrodinger equation
    Inc, Mustafa
    Yusuf, Abdullahi
    Aliyu, Aliyu Isa
    Baleanu, Dumitru
    SUPERLATTICES AND MICROSTRUCTURES, 2017, 112 : 164 - 179
  • [16] Novel topological quasi-soliton solutions for the nonlinear cubic-quintic Schrodinger equation model
    Serkin, VN
    Belyaeva, TL
    Alexandrov, IV
    Melchor, GM
    OPTICAL PULSE AND BEAM PROPAGATION III, 2001, 4271 : 292 - 302
  • [17] Nontrivial on-site soliton solutions for stationary cubic-quintic discrete nonlinear schrodinger equation
    Qausar, Haves
    Ramli, Marwan
    Munzir, Said
    Syafwan, Mahdhivan
    Susanto, Hadi
    Halfiani, Vera
    Ramli, Marwan (marwan.math@unsyiah.ac.id), 1600, International Association of Engineers (50): : 1 - 5
  • [18] Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrodinger equations
    Peng, Wei-Qi
    Tian, Shou-Fu
    Wang, Xiu-Bin
    Zhang, Tian-Tian
    Fang, Yong
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 146
  • [19] Multi-soliton solutions of the N-component nonlinear Schrodinger equations via Riemann-Hilbert approach
    Li, Yan
    Li, Jian
    Wang, Ruiqi
    NONLINEAR DYNAMICS, 2021, 105 (02) : 1765 - 1772
  • [20] RIEMANN-HILBERT APPROACH AND N-SOLITON SOLUTIONS OF THE GENERALIZED MIXED NONLINEAR SCHRODINGER EQUATION
    Qiu, Deqin
    Lv, Cong
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 210 (03) : 287 - 303