Riemann-Hilbert problems and soliton solutions for a multi-component cubic-quintic nonlinear Schrodinger equation

被引:12
作者
Zhang, Yong [1 ]
Dong, Huan-He [1 ]
Wang, Deng-Shan [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Multi-component cubic-quintic nonlinear; Schrodinger equation; Integrable hierarchy; Riemann-Hilbert problem; Soliton solution; INVERSE SCATTERING TRANSFORM; SEMIDIRECT SUMS; MKDV SYSTEM; INTEGRABILITY; EVOLUTION; WAVES;
D O I
10.1016/j.geomphys.2019.103569
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the zero curvature equation, an arbitrary order matrix spectral problem is studied and its associated multi-component cubic-quintic nonlinear Schrodinger integrable hierarchy is derived. In order to solve the multi-component cubic-quintic nonlinear Schrodinger system, a class of Riemann-Hilbert problem is proposed with appropriate transformation. Through the special Riemann-Hilbert problem, where the jump matrix is considered to be an identity matrix, the soliton solutions of all integrable equations are explicitly calculated. The specific examples of one-soliton, two-soliton and N-soliton solutions are explicitly presented. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 46 条
  • [1] Ablowitz MJ, 1991, Nonlinear Evolution Equations and Inverse Scattering
  • [2] [Anonymous], 2016, PREPRINT
  • [3] Drinfeld V.G., 1985, SOV J MATH, V30, P1975
  • [4] The unified method: I. Nonlinearizable problems on the half-line
    Fokas, A. S.
    Lenells, J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (19)
  • [5] SYMPLECTIC STRUCTURES, THEIR BACKLUND-TRANSFORMATIONS AND HEREDITARY SYMMETRIES
    FUCHSSTEINER, B
    FOKAS, AS
    [J]. PHYSICA D, 1981, 4 (01): : 47 - 66
  • [6] Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation
    Geng, Xianguo
    Wu, Jianping
    [J]. WAVE MOTION, 2016, 60 : 62 - 72
  • [7] Gerdjikov VS, 2008, LECT NOTES PHYS, V748, P3, DOI 10.1007/978-3-540-77054-1_1
  • [8] Gerdjikov V.S., 2002, CONTEMP MATH, V301, P35
  • [9] Riemann-Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg-de Vries equation on the half-line
    Hu, Bei-Bei
    Xia, Tie-Cheng
    Ma, Wen-Xiu
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 332 : 148 - 159
  • [10] On the dressing method for the generalised Zakharov-Shabat system
    Ivanov, R
    [J]. NUCLEAR PHYSICS B, 2004, 694 (03) : 509 - 524