Realization of PBW-deformations of type An quantum groups via multiple Ore extensions

被引:8
|
作者
Xu, Yongjun [1 ,2 ]
Huang, Hua-Lin [3 ]
Wang, Dingguo [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
[3] Huaqiao Univ, Fujian Prov Univ Key Lab Computat Sci, Sch Math Sci, Quanzhou 362021, Peoples R China
关键词
CONNECTED HOPF-ALGEBRAS; COIDEAL SUBALGEBRAS; SYMMETRIC PAIRS; ROOT VECTORS; THEOREM;
D O I
10.1016/j.jpaa.2018.06.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of multiple Ore extension is introduced as a natural generalization of Ore extensions and double Ore extensions. For a PBW-deformation B-q(sl(n + 1, C)) of type A(n) quantum group, we explicitly obtain the commutation relations of its root vectors, then show that it can be realized via a series of multiple Ore extensions, which we call a ladder Ore extension of type (1, 2, ..., n). Moreover, we analyze the quantum algebras B-q(g) with g of type D-4, B-2 and G(2) and give some examples and counterexamples that can be realized by a ladder Ore extension. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1531 / 1547
页数:17
相关论文
共 4 条
  • [1] PBW-deformations of quantum groups
    Xu, Yongjun
    Yang, Shilin
    JOURNAL OF ALGEBRA, 2014, 408 : 222 - 249
  • [2] Analogues of quantum Schubert cell algebras in PBW-deformations of quantum groups
    Xu, Yongjun
    Wang, Dingguo
    Chen, Jialei
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (10)
  • [3] Realization of ıquantum groups via Δ-Hall algebras
    Chen, Jiayi
    Lin, Yanan
    Ruan, Shiquan
    JOURNAL OF ALGEBRA, 2024, 653 : 378 - 403
  • [4] ?Quantum groups of split type via derived Hall algebras
    Chen, Jiayi
    Lu, Ming
    Ruan, Shiquan
    JOURNAL OF ALGEBRA, 2022, 610 : 391 - 408