Development and validation of a supervised deep learning algorithm for automated whole-slide programmed death-ligand 1 tumour proportion score assessment in non-small cell lung cancer

被引:28
作者
Hondelink, Liesbeth M. [1 ]
Huyuk, Melek [2 ]
Postmus, Pieter E. [2 ]
Smit, Vincent T. H. B. M. [1 ]
Blom, Sami [3 ]
von der Thusen, Jan H. [4 ]
Cohen, Danielle [1 ]
机构
[1] Leiden Univ, Dept Pathol, Med Ctr, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands
[2] Leiden Univ, Dept Pulmonol, Med Ctr, Leiden, Netherlands
[3] Aiforia Technol Oy, Helsinki, Finland
[4] Erasmus MC, Dept Pathol, Rotterdam, Netherlands
基金
欧盟地平线“2020”;
关键词
artificial intelligence; computational pathology; immunotherapy; non-small cell lung cancer; programmed death-ligand 1; PD-L1; IMMUNOHISTOCHEMISTRY; PEMBROLIZUMAB;
D O I
10.1111/his.14571
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Aims Immunohistochemical programmed death-ligand 1 (PD-L1) staining to predict responsiveness to immunotherapy in patients with advanced non-small cell lung cancer (NSCLC) has several drawbacks: a robust gold standard is lacking, and there is substantial interobserver and intraobserver variance, with up to 20% discordance around cutoff points. The aim of this study was to develop a new deep learning-based PD-L1 tumour proportion score (TPS) algorithm, trained and validated on a routine diagnostic dataset of digitised PD-L1 (22C3, laboratory-developed test)-stained samples. Methods and results We designed a fully supervised deep learning algorithm for whole-slide PD-L1 assessment, consisting of four sequential convolutional neural networks (CNNs), using aiforia create software. We included 199 whole slide images (WSIs) of 'routine diagnostic' histology samples from stage IV NSCLC patients, and trained the algorithm by using a training set of 60 representative cases. We validated the algorithm by comparing the algorithm TPS with the reference score in a held-out validation set. The algorithm had similar concordance with the reference score (79%) as the pathologists had with one another (75%). The intraclass coefficient was 0.96 and Cohen's kappa coefficient was 0.69 for the algorithm. Around the 1% and 50% cutoff points, concordance was also similar between pathologists and the algorithm. Conclusions We designed a new, deep learning-based PD-L1 TPS algorithm that is similarly able to assess PD-L1 expression in daily routine diagnostic cases as pathologists. Successful validation on routine diagnostic WSIs and detailed visual feedback show that this algorithm meets the requirements for functioning as a 'scoring assistant'.
引用
收藏
页码:635 / 647
页数:13
相关论文
共 28 条
[11]   Pembrolizumab for the Treatment of Non-Small-Cell Lung Cancer [J].
Garon, Edward B. ;
Rizvi, Naiyer A. ;
Hui, Rina ;
Leighl, Natasha ;
Balmanoukian, Ani S. ;
Eder, Joseph Paul ;
Patnaik, Amita ;
Aggarwal, Charu ;
Gubens, Matthew ;
Horn, Leora ;
Carcereny, Enric ;
Ahn, Myung-Ju ;
Felip, Enriqueta ;
Lee, Jong-Seok ;
Hellmann, Matthew D. ;
Hamid, Omid ;
Goldman, Jonathan W. ;
Soria, Jean-Charles ;
Dolled-Filhart, Marisa ;
Rutledge, Ruth Z. ;
Zhang, Jin ;
Lunceford, Jared K. ;
Rangwala, Reshma ;
Lubiniecki, Gregory M. ;
Roach, Charlotte ;
Emancipator, Kenneth ;
Gandhi, Leena .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (21) :2018-2028
[12]   Nivolumab Monotherapy for First-Line Treatment of Advanced Non-Small-Cell Lung Cancer [J].
Gettinger, Scott ;
Rizvi, Naiyer A. ;
Chow, Laura Q. ;
Borghaei, Hossein ;
Brahmer, Julie ;
Ready, Neal ;
Gerber, David E. ;
Shepherd, Frances A. ;
Antonia, Scott ;
Goldman, JonathanW. ;
Juergens, Rosalyn A. ;
Laurie, Scott A. ;
Nathan, Faith E. ;
Shen, Yun ;
Harbison, Christopher T. ;
Hellmann, Matthew D. .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (25) :2980-+
[13]  
Howlader NNA, 2019, SEER CANC STAT REV 1
[14]  
Inge L J, 2020, Immunooncol Technol, V6, P2, DOI 10.1016/j.iotech.2020.04.001
[15]   Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies [J].
Kapil, Ansh ;
Meier, Armin ;
Zuraw, Aleksandra ;
Steele, Keith E. ;
Rebelatto, Marlon C. ;
Schmidt, Guenter ;
Brieu, Nicolas .
SCIENTIFIC REPORTS, 2018, 8
[16]   Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study [J].
Langer, Corey J. ;
Gadgeel, Shirish M. ;
Borghaei, Hossein ;
Papadimitrakopoulou, Vassiliki A. ;
Patnaik, Amita ;
Powell, Steven F. ;
Gentzler, Ryan D. ;
Martins, Renato G. ;
Stevenson, James P. ;
Jalal, Shadia I. ;
Panwalkar, Amit ;
Yang, James Chih-Hsin ;
Gubens, Matthew ;
Sequist, Lecia V. ;
Awad, Mark M. ;
Fiore, Joseph ;
Ge, Yang ;
Raftopoulos, Harry ;
Gandhi, Leena .
LANCET ONCOLOGY, 2016, 17 (11) :1497-1508
[17]   An integrated iterative annotation technique for easing neural network training in medical image analysis [J].
Lutnick, Brendon ;
Ginley, Brandon ;
Govind, Darshana ;
McGarry, Sean D. ;
LaViolette, Peter S. ;
Yacoub, Rabi ;
Jain, Sanjay ;
Tomaszewski, John E. ;
Jen, Kuang-Yu ;
Sarder, Pinaki .
NATURE MACHINE INTELLIGENCE, 2019, 1 (02) :112-+
[18]  
Parkin D. M., 1999, CA Cancer J. Clin, V49, P33, DOI [DOI 10.3322/CANJCLIN.49.1.33, 10.3322/canjclin.49.1.33, DOI 10.3322/CAAC.21492]
[19]   Agreement between Programmed Cell Death Ligand-1 Diagnostic Assays across Multiple Protein Expression Cutoffs in Non-Small Cell Lung Cancer [J].
Ratcliffe, Marianne J. ;
Sharpe, Alan ;
Midha, Anita ;
Barker, Craig ;
Scott, Marietta ;
Scorer, Paul ;
Al-Masri, Hytham ;
Rebelatto, Marlon C. ;
Walker, Jill .
CLINICAL CANCER RESEARCH, 2017, 23 (14) :3585-3591
[20]   A Prospective, Multi-institutional, Pathologist-Based Assessment of 4 Immunohistochemistry Assays for PD-L1 Expression in Non-Small Cell Lung Cancer [J].
Rimm, David L. ;
Han, Gang ;
Taube, Janis M. ;
Yi, Eunhee S. ;
Bridge, Julia A. ;
Flieder, Douglas B. ;
Homer, Robert ;
West, William W. ;
Wu, Hong ;
Roden, Anja C. ;
Fujimoto, Junya ;
Yu, Hui ;
Anders, Robert ;
Kowalewski, Ashley ;
Rivard, Christopher ;
Rehman, Jamaal ;
Batenchuk, Cory ;
Burns, Virginia ;
Hirsch, Fred R. ;
Wistuba, Ignacio I. .
JAMA ONCOLOGY, 2017, 3 (08) :1051-1058