Development and validation of a supervised deep learning algorithm for automated whole-slide programmed death-ligand 1 tumour proportion score assessment in non-small cell lung cancer

被引:28
作者
Hondelink, Liesbeth M. [1 ]
Huyuk, Melek [2 ]
Postmus, Pieter E. [2 ]
Smit, Vincent T. H. B. M. [1 ]
Blom, Sami [3 ]
von der Thusen, Jan H. [4 ]
Cohen, Danielle [1 ]
机构
[1] Leiden Univ, Dept Pathol, Med Ctr, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands
[2] Leiden Univ, Dept Pulmonol, Med Ctr, Leiden, Netherlands
[3] Aiforia Technol Oy, Helsinki, Finland
[4] Erasmus MC, Dept Pathol, Rotterdam, Netherlands
基金
欧盟地平线“2020”;
关键词
artificial intelligence; computational pathology; immunotherapy; non-small cell lung cancer; programmed death-ligand 1; PD-L1; IMMUNOHISTOCHEMISTRY; PEMBROLIZUMAB;
D O I
10.1111/his.14571
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Aims Immunohistochemical programmed death-ligand 1 (PD-L1) staining to predict responsiveness to immunotherapy in patients with advanced non-small cell lung cancer (NSCLC) has several drawbacks: a robust gold standard is lacking, and there is substantial interobserver and intraobserver variance, with up to 20% discordance around cutoff points. The aim of this study was to develop a new deep learning-based PD-L1 tumour proportion score (TPS) algorithm, trained and validated on a routine diagnostic dataset of digitised PD-L1 (22C3, laboratory-developed test)-stained samples. Methods and results We designed a fully supervised deep learning algorithm for whole-slide PD-L1 assessment, consisting of four sequential convolutional neural networks (CNNs), using aiforia create software. We included 199 whole slide images (WSIs) of 'routine diagnostic' histology samples from stage IV NSCLC patients, and trained the algorithm by using a training set of 60 representative cases. We validated the algorithm by comparing the algorithm TPS with the reference score in a held-out validation set. The algorithm had similar concordance with the reference score (79%) as the pathologists had with one another (75%). The intraclass coefficient was 0.96 and Cohen's kappa coefficient was 0.69 for the algorithm. Around the 1% and 50% cutoff points, concordance was also similar between pathologists and the algorithm. Conclusions We designed a new, deep learning-based PD-L1 TPS algorithm that is similarly able to assess PD-L1 expression in daily routine diagnostic cases as pathologists. Successful validation on routine diagnostic WSIs and detailed visual feedback show that this algorithm meets the requirements for functioning as a 'scoring assistant'.
引用
收藏
页码:635 / 647
页数:13
相关论文
共 28 条
[1]   Proof of Concept for a Deep Learning Algorithm for Identification and Quantification of Key Microscopic Features in the Murine Model of DSS-Induced Colitis [J].
Bedard, Agathe ;
Westerling-Bui, Thomas ;
Zuraw, Aleksandra .
TOXICOLOGIC PATHOLOGY, 2021, 49 (04) :897-904
[2]   PD-L1 immunohistochemistry in clinical diagnostics of lung cancer: inter-pathologist variability is higher than assay variability [J].
Brunnstrom, Hans ;
Johansson, Anna ;
Westbom-Fremer, Sofia ;
Backman, Max ;
Djureinovic, Dijana ;
Patthey, Annika ;
Isaksson-Mettvainio, Martin ;
Gulyas, Miklos ;
Micke, Patrick .
MODERN PATHOLOGY, 2017, 30 (10) :1411-1421
[3]   Multicentre study on the consistency of PD-L1 immunohistochemistry as predictive test for immunotherapy in non-small cell lung cancer [J].
Butter, Rogier ;
't Hart, Nils A. ;
Hooijer, Gerrit K. J. ;
Monkhorst, Kim ;
Speel, Ernst-Jan ;
Theunissen, Paul ;
Thunnissen, Erik ;
Von der Thusen, Jan H. ;
Timens, Wim ;
van de Vijver, Marc J. .
JOURNAL OF CLINICAL PATHOLOGY, 2020, 73 (07) :423-430
[4]  
Chang S, 2019, J PATHOL TRANSL MED, V53, P347
[5]   Comparative efficacy and safety of first-line treatments for advanced non-small cell lung cancer with immune checkpoint inhibitors: A systematic review and meta-analysis [J].
Chen, Rui ;
Hou, Xiaoming ;
Yang, Liping ;
Zhao, Da .
THORACIC CANCER, 2019, 10 (04) :607-623
[6]   Optimizing Mutation and Fusion Detection in NSCLC by Sequential DNA and RNA Sequencing [J].
Cohen, Danielle ;
Hondelink, Liesbeth M. ;
Solleveld-Westerink, Nienke ;
Uljee, Sandra M. ;
Ruano, Dina ;
Cleton-Jansen, Anne-Marie ;
von der Thusen, Jan H. ;
Ramai, S. Rajen S. ;
Postmus, Pieter E. ;
van Roggen, Jacob F. Graadt ;
Hoppe, Bart P. C. ;
Clahsen, Pieter C. ;
Maas, Klaartje W. ;
Ahsmann, Els J. M. ;
ten Heuvel, Alexandra ;
Smedts, Frank ;
van Rossem, Ronald N. ;
van Wezel, Tom .
JOURNAL OF THORACIC ONCOLOGY, 2020, 15 (06) :1000-1014
[7]   Intra- and Interobserver Reproducibility Assessment of PD-L1 Biomarker in Non-Small Cell Lung Cancer [J].
Cooper, Wendy A. ;
Russell, Prudence A. ;
Cherian, Maya ;
Duhig, Edwina E. ;
Godbolt, David ;
Jessup, Peter J. ;
Khoo, Christine ;
Leslie, Connull ;
Mahar, Annabelle ;
Moffat, David F. ;
Sivasubramaniam, Vanathi ;
Faure, Celine ;
Reznichenko, Alena ;
Grattan, Amanda ;
Fox, Stephen B. .
CLINICAL CANCER RESEARCH, 2017, 23 (16) :4569-4577
[8]  
Dong HD, 2002, NAT MED, V8, P793, DOI 10.1038/nm730
[9]   PD-L1 as a biomarker of response to immune-checkpoint inhibitors [J].
Doroshow, Deborah Blythe ;
Bhalla, Sheena ;
Beasley, Mary Beth ;
Sholl, Lynette M. ;
Kerr, Keith M. ;
Gnjatic, Sacha ;
Wistuba, Ignacio I. ;
Rimm, David L. ;
Tsao, Ming Sound ;
Hirsch, Fred R. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2021, 18 (06) :345-362
[10]   Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer [J].
Gandhi, L. ;
Rodriguez-Abreu, D. ;
Gadgeel, S. ;
Esteban, E. ;
Felip, E. ;
De Angelis, F. ;
Domine, M. ;
Clingan, P. ;
Hochmair, M. J. ;
Powell, S. F. ;
Cheng, S. Y. -S. ;
Bischoff, H. G. ;
Peled, N. ;
Grossi, F. ;
Jennens, R. R. ;
Reck, M. ;
Hui, R. ;
Garon, E. B. ;
Boyer, M. ;
Rubio-Viqueira, B. ;
Novello, S. ;
Kurata, T. ;
Gray, J. E. ;
Vida, J. ;
Wei, Z. ;
Yang, J. ;
Raftopoulos, H. ;
Pietanza, M. C. ;
Garassino, M. C. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (22) :2078-2092