A density functional theory study of catalytic oxygen reduction reaction on Co-CoO(111)

被引:3
|
作者
Yang, Xue [1 ]
Chen, Jing [1 ]
Tan, Guoying [1 ]
Zhang, Yaning [1 ]
Zhang, Zhuang [1 ]
Yang, Zuoyin [1 ]
Liu, Wen [1 ]
Li, Yaping [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Chem, State Key Lab Chem Resource Engn, 15 BeiSanhuan East Rd, Beijing 100029, Peoples R China
来源
MOLECULAR CATALYSIS | 2022年 / 530卷
基金
北京市自然科学基金;
关键词
Co-CoO(111); First principles; Density functional theory; Oxygen reduction reaction; HYDROGEN EVOLUTION; ELECTROCATALYSTS; 1ST-PRINCIPLES; NANOPARTICLES; SURFACE; CARBON; PERFORMANCE; CHALLENGES; EFFICIENCY; BATTERIES;
D O I
10.1016/j.mcat.2022.112569
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The demand for clean energy has greatly increased given the current situation of environmental pollution and energy shortages. Fuel cells have attracted much attention because of their high energy density and low pollutant emission. However, the oxygen-reduction reaction (ORR) kinetics of the cathode are slow, and many platinum -based catalysts are needed to drive the reaction. The high platinum price and scarce reserves limit the application of fuel cells. It is therefore urgent to develop cheaper and more efficient non-noble-metal catalysts to drive the ORR. One promising approach is to develop transition-metal-oxide catalysts with high ORR catalytic perfor-mance. Here, the structure of CoO was modified, and the surface of partially reduced CoO(111) catalyst [Co-CoO (111)] was simulated via density functional theory (DFT). The catalytic ORR on two kinds of Co (Co-2, Co-3) on the Co-CoO(111) surface were simulated and free-energy diagrams were created. When Co-2 was used as the active site, the Co-CoO(111) catalyst had a low overpotential of 0.34 eV. Besides, when Co-3 site was covered with O and Co-2(*)-Co-3(O*) is used as ORR reaction site, it still had good catalytic performance of ORR. The electronic structure of Co-CoO(111) was used to explain the high level of the ORR.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Catalytic activity of Co-Nx/C electrocatalysts for oxygen reduction reaction: a density functional theory study
    Kattel, Shyam
    Atanassov, Plamen
    Kiefer, Boris
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (01) : 148 - 153
  • [2] Mechanistic study of the electrochemical oxygen reduction reaction on Pt(111) using density functional theory
    Hyman, Matthew P.
    Medlin, J. Will
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (31): : 15338 - 15344
  • [3] A density functional theory study of the oxygen reduction reaction on the (111) and (100) surfaces of cobalt(II) oxide
    Qin, Bangchang
    Tian, Yang
    Zhang, Pengxiang
    Yang, Zuoyin
    Zhang, Guoxin
    Cai, Zhao
    Li, Yaping
    PROGRESS IN REACTION KINETICS AND MECHANISM, 2019, 44 (02) : 122 - 131
  • [4] The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations
    Tripkovic, Vladimir
    Skulason, Egill
    Siahrostami, Samira
    Norskov, Jens K.
    Rossmeisl, Jan
    ELECTROCHIMICA ACTA, 2010, 55 (27) : 7975 - 7981
  • [5] Catalytic Activity for Oxygen Reduction Reaction on CoN2-Graphene: A Density Functional Theory Study
    Zhang, Jing
    Liu, Lijuan
    Liu, Wen
    Zhang, Mingang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (03) : F160 - F165
  • [6] Density Functional Theory Study of the Oxygen Reduction Reaction on Metalloporphyrins and Metallophthalocyanines
    Sun, Shaorui
    Jiang, Ning
    Xia, Dingguo
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (19): : 9511 - 9517
  • [7] A density functional theory study of CO and atomic oxygen chemisorption on Pt(111)
    Lynch, M
    Hu, P
    SURFACE SCIENCE, 2000, 458 (1-3) : 1 - 14
  • [8] Catalytic Activity for Oxygen Reduction Reaction on CoN2 Embedded Graphene: A Density Functional Theory Study
    Zhang, Jing
    Wang, Yan
    Wang, Yuanyang
    Zhang, Mingang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) : F1122 - F1129
  • [9] Oxygen Reduction Reaction on Ag(111) in Alkaline Solution: A Combined Density Functional Theory and Kinetic Monte Carlo Study
    Liu, Shizhong
    White, Michael G.
    Liu, Ping
    CHEMCATCHEM, 2018, 10 (03) : 540 - 549
  • [10] Density functional theory study of oxygen reduction reaction on Pt/Pd3Al(111) alloy electrocatalyst
    Xiao, B. B.
    Jiang, X. B.
    Jiang, Q.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (21) : 14234 - 14243