Weak Galerkin finite-element method for time-fractional nonlinear integro-differential equations

被引:14
|
作者
Wang, Haifeng [1 ]
Xu, Da [1 ]
Guo, Jing [1 ]
机构
[1] Hunan Normal Univ, Minist Educ China, Coll Math & Stat, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
The time-fractional nonlinear integral differential equation; Weak Galerkin finite-element method; Stability; convergence; Numerical experiments; DIFFERENCE SCHEME; DIFFUSION;
D O I
10.1007/s40314-020-1134-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a fully discrete scheme for one-dimensional (1D) time-fractional nonlinear integro-differential equation is established based on the weak Galerkin finite-element method. The stability and convergence of this scheme are proved. Several numerical experiments are presented to illustrate the theoretical analysis and to show the strong potential of this method.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Galerkin finite element method for nonlinear fractional Schrödinger equations
    Meng Li
    Chengming Huang
    Pengde Wang
    Numerical Algorithms, 2017, 74 : 499 - 525
  • [32] Meshless method of solving multi-term time-fractional integro-differential equation
    Du, Hong
    Yang, Xinyue
    Chen, Zhong
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [33] Explicit exponential Runge-Kutta methods for semilinear time-fractional integro-differential equations
    Zhou, Jun
    Zhang, Hao
    Liu, Mengmeng
    Xu, Da
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [34] A Local Discontinuous Galerkin Method for Time-Fractional Burgers Equations
    Yuan, Wenping
    Chen, Yanping
    Huang, Yunqing
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (04) : 818 - 837
  • [35] A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    Zeng, Zhankuan
    Chen, Yanping
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (02) : 839 - 854
  • [36] Weak Galerkin finite element method for a class of time fractional generalized Burgers' equation
    Wang, Haifeng
    Xu, Da
    Zhou, Jun
    Guo, Jing
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (01) : 732 - 749
  • [37] A Local Discontinuous Galerkin Method for Time-Fractional Diffusion Equations
    Zhankuan Zeng
    Yanping Chen
    Acta Mathematica Scientia, 2023, 43 : 839 - 854
  • [38] A New Mixed Element Method for a Class of Time-Fractional Partial Differential Equations
    Liu, Yang
    Li, Hong
    Gao, Wei
    He, Siriguleng
    Fang, Zhichao
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [39] The local discontinuous Galerkin finite element method for a multiterm time-fractional initial-boundary value problem
    Wang, Zhen
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (06) : 4391 - 4413
  • [40] WEAK GALERKIN FINITE ELEMENT METHOD BASED ON POD FOR NONLINEAR PARABOLIC EQUATIONS
    Zhang, Jianghong
    Gao, Fuzheng
    Cui, Jintao
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2025, 21 (02) : 157 - 177