Novel electrochemically driven and internal circulation process for valuable metals recycling from spent lithium-ion batteries

被引:36
作者
Li, Shuzhen [1 ]
Wu, Xin [1 ]
Jiang, Youzhou [2 ]
Zhou, Tao [2 ]
Zhao, Yan [3 ]
Chen, Xiangping [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Environm Sci & Engn, Xian 710021, Shaanxi, Peoples R China
[2] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[3] Qingdao Topscomm Commun Co LTD, TOPSCOMM Ind Pk,858 Huaguan Rd, Qingdao 266109, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent lithium-ion batteries; Valuable metals; Recycling; Electro-chemical leaching; Electro-deposition; PRINTED-CIRCUIT BOARDS; SIMULTANEOUS RECOVERY; PROCESS OPTIMIZATION; CATHODE SCRAP; COBALT; LI; KINETICS; ACID; LINI1/3CO1/3MN1/3O2; SOLVENT;
D O I
10.1016/j.wasman.2021.09.023
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The sustainable recycling of valuable metals from spent lithium-ion batteries (LIBs) is impeded by the issues of extensive chemicals consumption, tedious separation process and deficient selectivity. Here, novel electrochemically driven and internal circulation strategy was developed for the direct and selective recycling of valuable metals from waste LiCoO2 of spent LIBs. Firstly, the waste LiCoO2 can be efficiently dissolved by generated acid (H2SO4) during electro-deposition of Cu from CuSO4 electrolyte. Then, Co2+ ions in the lixivium can be electrodeposited and recovered as metallic Co with a coinstantaneous regeneration of H2SO4 and re-generated acid can be reused as leachant without obvious shrinking of leaching capability based on circulating leaching results. Over 92% Co and 97% Li can be leached, and 100% Cu and 93% Co are recovered as their metallic forms under the optimized experimental conditions. Results of leaching kinetics suggest that the leaching of Co and Li is controlled by internal diffusion with significantly reduced apparent activation energies (Ea) for Li and Co. Finally, Li2CO3 can be recovered from Li+ enriched lixivium after circulating leaching. This recycling process is a simplified route without any input of leachant and reductant, and valuable metals can be selectively recovered in a closed-loop way with high efficiency.
引用
收藏
页码:18 / 27
页数:10
相关论文
共 50 条
  • [21] Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process
    Li, Li
    Zhai, Longyu
    Zhang, Xiaoxiao
    Lu, Jun
    Chen, Renjie
    Wu, Feng
    Amine, Khalil
    JOURNAL OF POWER SOURCES, 2014, 262 : 380 - 385
  • [22] Leaching valuable metals from spent lithium-ion batteries using the reducing agent methanol
    Kong, Lingyu
    Wang, Zhaowen
    Shi, Zhongning
    Hu, Xianwei
    Liu, Aimin
    Tao, Wenju
    Wang, Benping
    Wang, Qian
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (02) : 4258 - 4268
  • [23] Sustainable Recovery of Metals from Spent Lithium-Ion Batteries: A Green Process
    Chen, Xiangping
    Luo, Chuanbao
    Zhang, Jinxia
    Kong, Jiangrong
    Zhou, Tao
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2015, 3 (12): : 3104 - 3113
  • [24] Leaching Mechanisms of Recycling Valuable Metals from Spent Lithium-Ion Batteries by a Malonic Acid-Based Leaching System
    Fan, Ersha
    Yang, Jingbo
    Huang, Yongxin
    Lin, Jiao
    Arshad, Faiza
    Wu, Feng
    Li, Li
    Chen, Renjie
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (09) : 8532 - 8542
  • [25] Ultrasonic-assisted leaching of valuable metals from spent lithium-ion batteries using organic additives
    Yan, Shuxuan
    Sun, Conghao
    Zhou, Tao
    Gao, Ruichuan
    Xie, Huasheng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 257
  • [26] Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant
    Yang, Jian
    Jiang, Liang-xing
    Liu, Fang-yang
    Jia, Ming
    Lai, Yan-qing
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2020, 30 (08) : 2256 - 2264
  • [27] Novel strategy towards in-situ recycling of valuable metals from spent lithium-ion batteries through endogenous advanced oxidation process
    Ou, Yudie
    Yan, Shuxuan
    Yuan, Lu
    Chen, Xiangping
    Zhou, Tao
    JOURNAL OF HAZARDOUS MATERIALS, 2023, 457
  • [28] Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching
    Li, Li
    Bian, Yifan
    Zhang, Xiaoxiao
    Guan, Yibiao
    Fan, Ersha
    Wu, Feng
    Chen, Renjie
    WASTE MANAGEMENT, 2018, 71 : 362 - 371
  • [29] Microwave reduction enhanced leaching of valuable metals from spent lithium -ion batteries
    Fu, Yuanpeng
    He, Yaqun
    Yang, Yong
    Qu, Lili
    Li, Jinlong
    Zhou, Rui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 832 (832)
  • [30] Impurity removal with highly selective and efficient methods and the recycling of transition metals from spent lithium-ion batteries
    Peng, Fangwei
    Mu, Deying
    Li, Ruhong
    Liu, Yuanlong
    Ji, Yuanpeng
    Dai, Changsong
    Ding, Fei
    RSC ADVANCES, 2019, 9 (38) : 21922 - 21930