An update on transport vesicle tethering

被引:31
作者
Brown, Frank C. [1 ]
Pfeffer, Suzanne R. [1 ]
机构
[1] Stanford Univ, Dept Biochem, Sch Med, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
Membrane traffic; vesicle tethering; Rab GTPase; Golgi complex; endosomes; ENDOPLASMIC RETICULUM RETRIEVAL; DEPENDENT MEMBRANE-FUSION; RAB5 EFFECTOR EEA1; SNARE COMPLEX; NUCLEOTIDE EXCHANGE; BINDING-SITES; CIS-GOLGI; COMPONENT; PROTEIN; DSL1P;
D O I
10.3109/09687688.2010.501765
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Membrane trafficking involves the collection of cargo into nascent transport vesicles that bud off from a donor compartment, translocate along cytoskeletal tracks, and then dock and fuse with their target membranes. Docking and fusion involve initial interaction at a distance (tethering), followed by a closer interaction that leads to pairing of vesicle SNARE proteins (v-SNAREs) with target membrane SNAREs (t-SNAREs), thereby catalyzing vesicle fusion. When tethering cannot take place, transport vesicles accumulate in the cytoplasm. Tethering is generally carried out by two broad classes of molecules: extended, coiled-coil proteins such as the so-called Golgin proteins, or multi-subunit complexes such as the Exocyst, COG or Dsl complexes. This review will focus on the most recent advances in terms of our understanding of the mechanism by which tethers carry out their roles, and new structural insights into tethering complex transactions.
引用
收藏
页码:457 / 461
页数:5
相关论文
共 50 条
  • [21] Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210
    Sato, Keisuke
    Roboti, Peristera
    Mironov, Alexander A.
    Lowe, Martin
    MOLECULAR BIOLOGY OF THE CELL, 2015, 26 (03) : 537 - 553
  • [22] Fast Vesicle Transport Is Required for the Slow Axonal Transport of Synapsin
    Tang, Yong
    Scott, David
    Das, Utpal
    Gitler, Daniel
    Ganguly, Archan
    Roy, Subhojit
    JOURNAL OF NEUROSCIENCE, 2013, 33 (39) : 15362 - 15375
  • [23] Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex
    Tripathi, Arati
    Ren, Yi
    Jeffrey, Philip D.
    Hughson, Frederick M.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2009, 16 (02) : 114 - 123
  • [24] Rab proteins, connecting transport and vesicle fusion
    Jordens, I
    Marsman, M
    Kuijl, C
    Neefjes, J
    TRAFFIC, 2005, 6 (12) : 1070 - 1077
  • [25] Tethering the assembly of SNARE complexes
    Hong, WanJin
    Lev, Sima
    TRENDS IN CELL BIOLOGY, 2014, 24 (01) : 35 - 43
  • [26] Rab proteins: The key regulators of intracellular vesicle transport
    Bhuin, Tanmay
    Roy, Jagat Kumar
    EXPERIMENTAL CELL RESEARCH, 2014, 328 (01) : 1 - 19
  • [27] Neutrophil recruitment and intracellular vesicle transport: A short overview
    Masgrau-Alsina, Sergi
    Sperandio, Markus
    Rohwedder, Ina
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2020, 50 (06)
  • [28] The Crystal Structure of a Munc13 C-terminal Module Exhibits a Remarkable Similarity to Vesicle Tethering Factors
    Li, Wei
    Ma, Cong
    Guan, Rong
    Xu, Yibin
    Tomchick, Diana R.
    Rizo, Josep
    STRUCTURE, 2011, 19 (10) : 1443 - 1455
  • [29] Multiple Rab GTPase Binding Sites in GCC185 Suggest a Model for Vesicle Tethering at the Trans-Golgi
    Hayes, Garret L.
    Brown, Frank C.
    Haas, Alexander K.
    Nottingham, Ryan M.
    Barr, Francis A.
    Pfeffer, Suzanne R.
    MOLECULAR BIOLOGY OF THE CELL, 2009, 20 (01) : 209 - 217
  • [30] MAG4/Atp115 is a Golgi-Localized Tethering Factor that Mediates Efficient Anterograde Transport in Arabidopsis
    Takahashi, Hideyuki
    Tamura, Kentaro
    Takagi, Junpei
    Koumoto, Yasuko
    Hara-Nishimura, Ikuko
    Shimada, Tomoo
    PLANT AND CELL PHYSIOLOGY, 2010, 51 (10) : 1777 - 1787