Evaluation of CRISPR/Cas12a-based DNA detection for fast pathogen diagnosis and GMO test in rice

被引:81
作者
Zhang, Yun-mu [1 ]
Zhang, Ying [1 ]
Xie, Kabin [1 ]
机构
[1] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement & Hubei Key L, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
DNA test; CRISPR; Cas12a; Rice blast; GMO; NUCLEIC-ACID DETECTION; CPF1; SPECIFICITIES;
D O I
10.1007/s11032-019-1092-2
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
DNA test is broadly used in diagnosis of crop disease and identification of genetic modified organism (GMO) in agriculture. However, rapid, low-cost, user-friendly, and field-deployable DNA test method is still limit. Recently, the RNA programmable nuclease of CRISPR/Cas is engineered as a new nucleic acid detection platform, but their application in plant remains to explore. In this study, we evaluated the Cas12a-based DNA detection for crop disease diagnosis and GMO test. A total of 14 crRNAs were designed to target two Magnaporthe oryzae genes and a synthetic Cry1C gene which encodes Bacillus thuringiensis delta-endotoxin and has been used to develop transgenic rice cultivar (Bt-rice) in China. Using a fluorescent reporter, targeted genes were easily detected by LbCas12a after recombinase polymerase amplification (RPA) for all crRNAs, despite that the signal strength varied 2-3-folds between different crRNAs. We further combined the filter paper-based DNA extraction and lateral flow assay (LFA) with RPA-Cas12a for DNA detection. This optimized Cas12a diagnostics method is carried at body temperature and does not require extra instrument except filter paper and LFA strip. Our data show that rice blast pathogen and Bt-rice were efficiently identified from leaf disc samples using this optimized DNA test method with highly active crRNAs. Moreover, LbCas12a exhibited variable nuclease activities on different targets; therefore, highly active crRNA is critical for successful DNA test using Cas12a and LFA. Owing to its simplicity, efficiency, and low-cost, DNA test using CRISPR/Cas12a would be easily applied in field for crop disease diagnosis and GMO administration.
引用
收藏
页数:12
相关论文
共 42 条
[1]   Magnetic particles for the separation and purification of nucleic acids [J].
Berensmeier, Sonja .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2006, 73 (03) :495-504
[2]   CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J].
Chen, Janice S. ;
Ma, Enbo ;
Harrington, Lucas B. ;
Da Costa, Maria ;
Tian, Xinran ;
Palefsky, Joel M. ;
Doudna, Jennifer A. .
SCIENCE, 2018, 360 (6387) :436-+
[3]   CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture [J].
Chen, Kunling ;
Wang, Yanpeng ;
Zhang, Rui ;
Zhang, Huawei ;
Gao, Caixia .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 70, 2019, 70 :667-697
[4]   New Grower-Friendly Methods for Plant Pathogen Monitoring [J].
De Boer, Solke H. ;
Lopez, Maria M. .
ANNUAL REVIEW OF PHYTOPATHOLOGY, VOL 50, 2012, 50 :197-218
[5]   Applications of Loop-Mediated Isothermal DNA Amplification [J].
Fu, Shijun ;
Qu, Guanggang ;
Guo, Shijin ;
Ma, Lin ;
Zhang, Na ;
Zhang, Songlin ;
Gao, Sanyang ;
Shen, Zhiqiang .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2011, 163 (07) :845-850
[6]   Engineered Cpf1 variants with altered PAM specificities [J].
Gao, Linyi ;
Cox, David B. T. ;
Yan, Winston X. ;
Manteiga, John C. ;
Schneider, Martin W. ;
Yamano, Takashi ;
Nishimasu, Hiroshi ;
Nureki, Osamu ;
Crosetto, Nicola ;
Zhang, Feng .
NATURE BIOTECHNOLOGY, 2017, 35 (08) :789-792
[7]   Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6 [J].
Gootenberg, Jonathan S. ;
Abudayyeh, Omar O. ;
Kellner, Max J. ;
Joung, Julia ;
Collins, James J. ;
Zhang, Feng .
SCIENCE, 2018, 360 (6387) :439-+
[8]   Nucleic acid detection with CRISPR-Cas13a/C2c2 [J].
Gootenberg, Jonathan S. ;
Abudayyeh, Omar O. ;
Lee, Jeong Wook ;
Essletzbichler, Patrick ;
Dy, Aaron J. ;
Joung, Julia ;
Verdine, Vanessa ;
Donghia, Nina ;
Daringer, Nichole M. ;
Freije, Catherine A. ;
Myhrvold, Cameron ;
Bhattacharyya, Roby P. ;
Livny, Jonathan ;
Regev, Aviv ;
Koonin, Eugene V. ;
Hung, Deborah T. ;
Sabeti, Pardis C. ;
Collins, James J. ;
Zhang, Feng .
SCIENCE, 2017, 356 (6336) :438-+
[9]  
GRAHAM GC, 1994, BIOTECHNIQUES, V16, P48
[10]   Programmed DNA destruction by miniature CRISPR-Cas14 enzymes [J].
Harrington, Lucas B. ;
Burstein, David ;
Chen, Janice S. ;
Paez-Espino, David ;
Ma, Enbo ;
Witte, Isaac P. ;
Cofsky, Joshua C. ;
Kyrpides, Nikos C. ;
Banfield, Jillian F. ;
Doudna, Jennifer A. .
SCIENCE, 2018, 362 (6416) :839-+