Effect on the strength of GGBS and fly ash based geopolymer concrete

被引:10
|
作者
Parashar, Arun Kumar [1 ]
Sharma, Prashant [1 ]
Sharma, Neha [1 ]
机构
[1] GLA Univ, Dept Civil Engn, Mathura 281406, Uttar Pradesh, India
关键词
GGBS; Fly ash; Compressive strength; Flexural strength; Split tensile strength; MECHANICAL-PROPERTIES; COMPOSITE;
D O I
10.1016/j.matpr.2022.04.662
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present global context, the use of environmentally sustainable friendly components in the manufacturing of concrete is a positive development. Due to the fact that many industrial by-products were used as a base material in the manufacturing of Geopolymer concrete, it was recognized as the most prominent one in line with the trend. Furthermore, geopolymer concrete was shown to be a feasible alternative to conventional Portland cement (OPC)-based concrete, resulting in a decrease in carbon dioxide emissions into the atmosphere. As a consequence, the impact of global warming has been mitigated, and environmental issues raised by OPC usage have been addressed. This research attempted to make geopolymer concrete under ambient curing circumstances using fly ash, Ground Granulated Blast Furnace Slag (GGBS), a decreased amount of alkaline activator, and bio-additives. In ambient-cured geopolymer concrete incorporating fly ash GGBS, a broad variety of attributes, including mechanical and durability parameters, were investigated. Mechanical tests were carried out, including the slump test, workability test, compression test, splitting tensile test, and flexural test. The durability attributes were assessed using the acid attack test, sulphate attack test, and chloride attack test. Copyright (c) 2022 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the International Conference on Materials, Processing & Characterization.
引用
收藏
页码:4130 / 4133
页数:4
相关论文
共 50 条
  • [21] GGBS And Fly Ash Effects on Compressive Strength by Partial Replacement of Cement Concrete
    Phul, Azmat Ali
    Memon, Muhammad Jaffar
    Shah, Syed Naveed Raza
    Sandhu, Abdul Razzaque
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2019, 5 (04): : 913 - 921
  • [22] Synthesis of Fly Ash-GGBS-Blended Geopolymer Composits
    Samantasinghar, Subhashree
    Singh, Suresh Prasad
    GEOTECHNICAL CHARACTERISATION AND GEOENVIRONMENTAL ENGINEERING, VOL 1, 2019, 16 : 83 - 91
  • [23] Fly Ash Based Geopolymer Concrete: a Comprehensive Review
    Ojha, Avinash
    Aggarwal, Praveen
    SILICON, 2022, 14 (06) : 2453 - 2472
  • [24] Bond strength in PVA fibre reinforced fly ash-based geopolymer concrete
    Zerfu, K.
    Ekaputri, J. J.
    MAGAZINE OF CIVIL ENGINEERING, 2021, 101 (01):
  • [25] A study on the effect of nano clay and GGBS on the strength properties of fly ash based geopolymers
    Ravitheja, A.
    Kumar, N. L. N. Kiran
    MATERIALS TODAY-PROCEEDINGS, 2019, 19 : 273 - 276
  • [26] Behaviour of Fly ash and GGBS based Monoblock Prestressed Geopolymer Concrete Composite sleepers
    Rathinam, Kumutha
    Kanagarajan, Vijai
    MATERIALS TODAY-PROCEEDINGS, 2022, 65 : 3321 - 3327
  • [27] Fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates: Properties and environmental impacts
    Singh, Rudra Pratap
    Vanapalli, Kumar Raja
    Cheela, Venkata Ravi Sankar
    Peddireddy, Sreekanth Reddy
    Sharma, Hari Bhakta
    Mohanty, Bijayananda
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 378
  • [28] Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete
    Albitar, M.
    Ali, M. S. Mohamed
    Visintin, P.
    Drechsler, M.
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 83 : 128 - 135
  • [29] The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete
    Kusbiantoro, Andri
    Nuruddin, Muhd Fadhil
    Shafiq, Nasir
    Qazi, Sobia Anwar
    CONSTRUCTION AND BUILDING MATERIALS, 2012, 36 : 695 - 703
  • [30] Effect of Ground Granulated Blast Slag and Temperature Curing on the Strength of Fly Ash-based Geopolymer Concrete
    Kumar, Anil
    Rajkishor
    Kumar, Niraj
    Chhotu, Anil Kumar
    Kumar, Bhushan
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2024, 14 (02) : 13319 - 13323