Saturable Absorption in 2D Nanomaterials and Related Photonic Devices

被引:144
|
作者
Wang, Gaozhong [1 ,2 ]
Baker-Murray, Aidan A. [1 ,2 ]
Blau, Werner J. [1 ,2 ]
机构
[1] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland
[2] Trinity Coll Dublin, Ctr Res Adapt Nanostruct & Nanodevices, Dublin 2, Ireland
基金
爱尔兰科学基金会;
关键词
2D materials; black phosphorus; graphene; I-scan; mode-locking; nonlinear optics; saturable absorption; transition metal dichalcogenides; Z-scan; DOPED FIBER LASER; LAYER MOLYBDENUM DISELENIDE; MULTILAYER BLACK PHOSPHORUS; PICOSECOND PULSE GENERATION; NONLINEAR REFRACTIVE-INDEX; REDUCED GRAPHENE OXIDE; PASSIVE-MODE LOCKING; ABSORBER MIRROR; 2-PHOTON ABSORPTION; OPTICAL-ABSORPTION;
D O I
10.1002/lpor.201800282
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Wide-spectral saturable absorption (SA) has been experimentally demonstrated in two-dimensional (2D) nanomaterials with outstanding performance, such as low saturation intensity, deep modulation depth, and fast recovery time of excited carriers. Hence, 2D nanomaterials can be utilized as saturable absorbers for mode-locking or Q-switching to generate laser pulses with short duration and high repetition rate. Here, the SA properties of graphene, layered transition metal dichalcogenides, Group-V elements, and other 2D nanomaterials are reviewed by summarizing their slow- or fast-saturable absorption behavior using the modified Frantz-Nodvik model or the steady-state solution of Hercher's rate equations. The dependence of SA in 2D nanomaterials on excitation wavelength, linear absorption coefficient, and pulse duration is also explained. Finally, the applications of these 2D nanomaterials in a range of pulsed lasers are summarized.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Saturable absorption and reverse saturable absorption of CdGa2Se4 nanoparticles determined by bond strength
    Xiao, Xingcheng
    Zhu, Haixia
    Wang, Chang
    Wang, Yingwei
    Chen, Zhihui
    Xiao, Si
    Zhong, Mianzeng
    He, Jun
    PHYSICS LETTERS A, 2022, 449
  • [32] Emergent Pseudocapacitance of 2D Nanomaterials
    Yu, Xu
    Yun, Sol
    Yeon, Jeong Seok
    Bhattacharya, Pallab
    Wang, Libin
    Lee, Seung Woo
    Hu, Xianluo
    Park, Ho Seok
    ADVANCED ENERGY MATERIALS, 2018, 8 (13)
  • [33] Tribology of 2D Nanomaterials: A Review
    Uzoma, Paul C.
    Hu, Huan
    Khadem, Mahdi
    Penkov, Oleksiy, V
    COATINGS, 2020, 10 (09)
  • [34] Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in Energy-Related Applications
    Khan, Ali Hossain
    Ghosh, Srabanti
    Pradhan, Bapi
    Dalui, Amit
    Shrestha, Lok Kumar
    Acharya, Somobrata
    Ariga, Katsuhiko
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2017, 90 (06) : 627 - 648
  • [35] 2D nanomaterials saturable absorbers fabrication using the droplet method for Erbium-doped fiber lasers
    Gerosa, R. M.
    Steinberg, D.
    Marcondes, R. L.
    Domingues, S. H.
    Saito, L. A. M.
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [36] Mechanically exfoliated 2D nanomaterials as saturable absorber for Q-switched erbium doped fiber laser
    M. H. M. Ahmed
    A. H. H. Al-Masoodi
    A. A. Latiff
    H. Arof
    S. W. Harun
    Indian Journal of Physics, 2017, 91 : 1259 - 1264
  • [37] 2D Materials for Optical Modulation: Challenges and Opportunities
    Yu, Shaoliang
    Wu, Xiaoqin
    Wang, Yipei
    Guo, Xin
    Tong, Limin
    ADVANCED MATERIALS, 2017, 29 (14)
  • [38] 2D Nanomaterials for Tissue Engineering and Regenerative Nanomedicines: Recent Advances and Future Challenges
    Zheng, Yuanyuan
    Hong, Xiangqian
    Wang, Jiantao
    Feng, Longbao
    Fan, Taojian
    Guo, Rui
    Zhang, Han
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (07)
  • [39] Environmental impact and potential health risks of 2D nanomaterials
    Fojtu, Michaela
    Teo, Wei Zhe
    Pumera, Martin
    ENVIRONMENTAL SCIENCE-NANO, 2017, 4 (08) : 1617 - 1633
  • [40] 2D nanomaterials based electrochemical biosensors for cancer diagnosis
    Wang, Lu
    Xiong, Qirong
    Xiao, Fei
    Duan, Hongwei
    BIOSENSORS & BIOELECTRONICS, 2017, 89 : 136 - 151