Using a new zero forcing process to guarantee the Strong Arnold Property

被引:4
作者
Lin, Jephian C. -H. [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
Strong Arnold Property; SAP zero forcing; Minimum rank; Maximum nullity; Colin de Verdiere type parameter; Vertex cover; MINIMUM RANK; TREE-WIDTH; PARAMETERS; DEVERDIERE; COLIN; SETS;
D O I
10.1016/j.laa.2016.06.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The maximum nullity M(G) and the Colin de Verdiere type parameter xi(G) both consider the largest possible nullity over matrices in 8(G), which is the family of real symmetric matrices whose i, j-entry, i not equal j, is nonzero if i is adjacent to j, and zero otherwise; however, (G) restricts to those matrices A in 8(G) with the Strong Arnold Property, which means X = O is the only symmetric matrix that satisfies A circle X = O, I circle X = O, and AX = O. This paper introduces zero forcing parameters Z(SAP)(G) and Z(vc)(G), and proves that Z(SAP) (G) = O implies every matrix A is an element of S(G) has the Strong Arnold Property and that the inequality M(G) - Z(vc)(G) <= xi(G) holds for every graph G. Finally, the values of xi(G) are computed for all graphs up to 7 vertices, establishing xi(G) = left perpendicularZright perpendicular(G) for these graphs. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:229 / 250
页数:22
相关论文
共 21 条
  • [1] [Anonymous], 2012, GRAPH THEORY
  • [2] The inertia set of a signed graph
    Arav, Marina
    Hall, Frank J.
    Li, Zhongshan
    van der Holst, Hein
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (05) : 1506 - 1529
  • [3] Barioli F, 2005, ELECTRON J LINEAR AL, V13, P387
  • [4] Zero forcing sets and the minimum rank of graphs
    Barioli, Francesco
    Barrett, Wayne
    Butler, Steve
    Cioaba, Sebastian M.
    Cvetkovic, Dragos
    Fallat, Shaun M.
    Godsil, Chris
    Haemers, Willem
    Hogben, Leslie
    Mikkelson, Rana
    Narayan, Sivaram
    Pryporova, Olga
    Sciriha, Irene
    So, Wasin
    Stevanovic, Dragan
    van der Holst, Hein
    Vander Meulen, Kevin N.
    Wehe, Amy Wangsness
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1628 - 1648
  • [5] Parameters Related to Tree-Width, Zero Forcing, and Maximum Nullity of a Graph
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    Shader, Bryan
    van den Driessche, P.
    van der Holst, Hein
    [J]. JOURNAL OF GRAPH THEORY, 2013, 72 (02) : 146 - 177
  • [6] Zero forcing parameters and minimum rank problems
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    Shader, Bryan
    van den Driessche, P.
    van der Holst, Hein
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (02) : 401 - 411
  • [7] The inverse inertia problem for graphs: Cut vertices, trees, and a counterexample
    Barrett, Wayne
    Hall, H. Tracy
    Loewy, Raphael
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (08) : 1147 - 1191
  • [8] Colin de Verdiere Y., 1993, Graph Structure Theory, P137
  • [9] de Verdiere YC, 1998, J COMB THEORY B, V74, P121
  • [10] Techniques for determining the minimum rank of a small graph
    DeLoss, Laura
    Grout, Jason
    Hogben, Leslie
    McKay, Tracy
    Smith, Jason
    Tims, Geoff
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2995 - 3001