Localized Anisotropic Regularity Conditions for the Navier-Stokes Equations

被引:6
作者
Kukavica, Igor [1 ]
Rusin, Walter [2 ]
Ziane, Mohammed [1 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
关键词
Navier-Stokes equations; Conditional regularity; Partial regularity; WEAK SOLUTIONS; CRITERION; PROOF;
D O I
10.1007/s00332-017-9382-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a sufficient regularity condition for local solutions of the Navier-Stokes equations. For a suitable weak solution (u, p) on a domain D we prove that if belongs to the space where and , then the solution is Holder continuous in D.
引用
收藏
页码:1725 / 1742
页数:18
相关论文
共 38 条
[1]  
[Anonymous], LONDON MATHEMATICAL
[2]  
[Anonymous], 2004, Applications of Mathematics
[3]  
[Anonymous], 2002, CHAPMAN HALL CRC RES
[4]  
[Anonymous], USPEKHI MAT NAUK
[5]  
[Anonymous], 2002, Topics in Mathematical Fluid Mechanics
[6]   Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations [J].
Berselli, LC ;
Galdi, GP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) :3585-3595
[7]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[8]   Global Regularity Criterion for the 3D Navier-Stokes Equations Involving One Entry of the Velocity Gradient Tensor [J].
Cao, Chongsheng ;
Titi, Edriss S. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (03) :919-932
[9]   Regularity Criteria for the Three-dimensional Navier-Stokes Equations [J].
Cao, Chongsheng ;
Titi, Edriss S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) :2643-2661
[10]  
Chae D., 1999, ELECT J DIFFERENTIAL, V1999, P05, DOI DOI 10.1080/10236199908808167