Realization and Discretization of Asymptotically Stable Homogeneous Systems

被引:48
|
作者
Efimov, Denis [1 ,2 ,3 ]
Polyakov, Andrey [1 ,2 ,3 ]
Levant, Arie [1 ,2 ,4 ]
Perruquetti, Wilfrid [1 ,2 ]
机构
[1] INRIA, Non A Team, Parc Sci Haute Borne, F-59650 Villeneuve Dascq, France
[2] Ecole Cent Lille, CRIStAL UMR CNRS 9189, F-59651 Villeneuve Dascq, France
[3] Univ ITMO, Dept Control Syst & Informat, St Petersburg 197101, Russia
[4] Tel Aviv Univ, Sch Math Sci, IL-6997801 Tel Aviv, Israel
关键词
Computer simulation; Lyapunov methods; System implementation; FIXED-TIME STABILIZATION; FINITE-TIME; LYAPUNOV FUNCTION; STABILITY; DESIGN;
D O I
10.1109/TAC.2017.2699284
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sufficient conditions for the existence and convergence to zero of numeric approximations to solutions of asymptotically stable homogeneous systems are obtained for the explicit and implicit Euler integration schemes. It is shown that the explicit Euler method has certain drawbacks for the global approximation of homogeneous systems with nonzero degrees, whereas the implicit Euler scheme ensures convergence of the approximating solutions to zero. Properties of absolute and relative errors of the respective discretizations are investigated.
引用
收藏
页码:5962 / 5969
页数:8
相关论文
共 50 条
  • [31] BIFURCATIONS IN ASYMPTOTICALLY AUTONOMOUS HAMILTONIAN SYSTEMS UNDER OSCILLATORY PERTURBATIONS
    Sultanov, Oskar A.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (12) : 5943 - 5978
  • [32] Bifurcations in Asymptotically Autonomous Hamiltonian Systems Subject to Multiplicative Noise
    Sultanov, Oskar A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (11):
  • [33] Uniformly Asymptotically Stable Solution for the Impulsive Differential Equations
    Suksai, S.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 42 (12): : 130 - 137
  • [34] State observers for the time discretization of a class of impulsive mechanical systems
    Preiswerk, Pascal, V
    Leine, Remco, I
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (12) : 6667 - 6683
  • [35] Homogeneous shrinking/amplifying device and its layered realization
    Yang, Chengfu
    Huang, Ming
    Li, Tinghua
    Yang, Jingjing
    Mao, Fuchun
    Xue, Yuyang
    AIP ADVANCES, 2019, 9 (02)
  • [36] Time-Varying Vector Norm and Lower and Upper Bounds on the Solutions of Uniformly Asymptotically Stable Linear Systems
    Vrabel, Robert
    MATHEMATICS, 2020, 8 (06)
  • [37] Asymptotically stable heteroclinic cycles in discrete-time Z4-equivariant cubic dynamical systems
    Gritsans, Armands
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (9-10) : 1247 - 1265
  • [38] Energetically Optimal Finite-Time Stabilization of Generalized Homogeneous Linear Systems
    Polyakov, Andrey
    Efimov, Denis
    Ping, Xubin
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (12) : 7811 - 7817
  • [39] Safety synthesis for incrementally stable switched systems using discretization-free multi-resolution abstractions
    Girard, Antoine
    Gossler, Gregor
    ACTA INFORMATICA, 2020, 57 (1-2) : 245 - 269
  • [40] Existence Conditions of Asymptotically Stable 2-D Feedback Control Systems on the Basis of Block Matrix Diagonalization
    Izuta, Giido
    ICINCO: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2016, : 463 - 470