Realization and Discretization of Asymptotically Stable Homogeneous Systems

被引:48
|
作者
Efimov, Denis [1 ,2 ,3 ]
Polyakov, Andrey [1 ,2 ,3 ]
Levant, Arie [1 ,2 ,4 ]
Perruquetti, Wilfrid [1 ,2 ]
机构
[1] INRIA, Non A Team, Parc Sci Haute Borne, F-59650 Villeneuve Dascq, France
[2] Ecole Cent Lille, CRIStAL UMR CNRS 9189, F-59651 Villeneuve Dascq, France
[3] Univ ITMO, Dept Control Syst & Informat, St Petersburg 197101, Russia
[4] Tel Aviv Univ, Sch Math Sci, IL-6997801 Tel Aviv, Israel
关键词
Computer simulation; Lyapunov methods; System implementation; FIXED-TIME STABILIZATION; FINITE-TIME; LYAPUNOV FUNCTION; STABILITY; DESIGN;
D O I
10.1109/TAC.2017.2699284
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sufficient conditions for the existence and convergence to zero of numeric approximations to solutions of asymptotically stable homogeneous systems are obtained for the explicit and implicit Euler integration schemes. It is shown that the explicit Euler method has certain drawbacks for the global approximation of homogeneous systems with nonzero degrees, whereas the implicit Euler scheme ensures convergence of the approximating solutions to zero. Properties of absolute and relative errors of the respective discretizations are investigated.
引用
收藏
页码:5962 / 5969
页数:8
相关论文
共 50 条
  • [21] Repetitive control of positive real systems via delayed feedback is Lyapunov asymptotically stable
    Lucibello, Pasquale
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (09) : 1748 - 1751
  • [22] An asymptotically stable robust controller formulation for a class of MIMO nonlinear systems with uncertain dynamics
    Bidikli, Baris
    Tatlicioglu, Enver
    Zergeroglu, Erkan
    Bayrak, Alper
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (12) : 2913 - 2924
  • [23] Asymptotically Stable Observer for Two-dimensional Systems with Multiple-Channel Faults
    Cao, Liang
    Liu, Changqing
    Wang, Youqing
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 7115 - 7120
  • [24] Stability and bifurcation phenomena in asymptotically Hamiltonian systems
    Sultanov, Oskar A.
    NONLINEARITY, 2022, 35 (05) : 2513 - 2534
  • [25] An asymptotically stable compact upwind-biased finite-difference scheme for hyperbolic systems
    Jocksch, A
    Adams, NA
    Kleiser, L
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 208 (02) : 435 - 454
  • [26] Asymptotically Stable Filter for MVU Estimation of States and Homologous Unknown Inputs in Heterogeneous Multiagent Systems
    Shi, Yukun
    Liu, Changqing
    Wang, Youqing
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (02) : 884 - 894
  • [27] Numerical design of Lyapunov functions for a class of homogeneous discontinuous systems
    Mendoza-Avila, Jesus
    Efimov, Denis
    Ushirobira, Rosane
    Moreno, Jaime A.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (09) : 3708 - 3729
  • [28] Homogeneous transparent device and its layered realization
    Yang, Cheng-Fu
    Huang, Ming
    Yang, Jing-Jing
    Mao, Fu-Chun
    Li, Ting-Hua
    Li, Peng
    Ren, Peng-Shan
    CHINESE PHYSICS B, 2018, 27 (12)
  • [29] The e-Property of Asymptotically Stable Markov Semigroups
    Kukulski, Ryszard
    Wojewodka-Sciazko, Hanna
    RESULTS IN MATHEMATICS, 2024, 79 (03)
  • [30] Robustly asymptotically stable finite-horizon MPC
    Kanev, S.
    Verhaegen, M.
    AUTOMATICA, 2006, 42 (12) : 2189 - 2194