Switchable Ytterbium Fiber Laser Based on a Symmetrical Long-Period Fiber Grating

被引:8
|
作者
Silva-Alvarado, Erika C. [1 ]
Martinez-Rios, Alejandro [2 ]
Ledesma-Carrillo, Luis M. [3 ]
Jauregui-Vazquez, Daniel [1 ]
Salceda-Delgado, Guillermo [4 ]
Elena Porraz-Culebro, Teresa
Martin Vela, Javier Antonio [1 ]
Manuel Sierra-Hernandez, Juan [1 ]
机构
[1] Univ Guanajuato, Dept Ingn Elect, Campus Irapuato Salamanca, Salamanca 36885, Gto, Mexico
[2] Ctr Invest Opt, Guanajuato 37105, Mexico
[3] Univ Guanajuato, Dept Estudios Multidisciplinarios, Campus Irapuato Salamanca, Guanajuato 38940, Mexico
[4] Univ Autonoma Nuevo Leon, Fac Ciencias Fis Matemat, San Nicolas De Los Garza 66455, Nuevo Leon, Mexico
来源
IEEE PHOTONICS JOURNAL | 2021年 / 13卷 / 03期
关键词
Ytterbium fiber laser; long period fiber grating (LPFG); switchable; CO2-laser glass processing system; MACH-ZEHNDER INTERFEROMETER; HIGH-POWER; WAVELENGTH; TEMPERATURE; STRAIN; OUTPUT; FILTER; NM;
D O I
10.1109/JPHOT.2021.3076416
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, a switchable ytterbium-doped fiber laser based on symmetrical long-period fiber grating (LPFG) is presented. The LPFG is used as a wavelength-selective filter (WSF). Utilizing this WSF, the laser can emit one, two, or multiple stable output beams by adjusting the temperature on the LPFG from 20 degrees C to 600 degrees C. In addition, switching is also possible by adjusting the curvature of the LPFG from 0.399 to 0.709 m(-1). The symmetrical LPFG was fabricated by combining the cladding shaping with the thermal core expansion techniques by using a CO2-laser LZM-100 glass-processing system. The experimental results show a side-mode suppression ratio (SMSR) of 49 dB and a linewidth of 0.06 nm, within the range from 1038 to 1080 nm. In conclusion, the main achievement of this switchable laser is the high SMSR and stable output for high values of temperature, using a repeatable, simple, easy construction, and cost-effective laser tuning technique.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Tunable Ytterbium-Doped Fiber Laser Based on a Mechanically Induced Long Period Holey Fiber Grating
    Gilberto Anzueto-Sánchez
    Alejandro Martínez-Rios
    Ismael Tores-Gómez
    Daniel Ceballos-Herrera
    Romeo Selvas-Aguilar
    Victor Duran-Ramirez
    Optical Review, 2007, 14 : 75 - 77
  • [12] Tunable ytterbium-doped fiber laser based on a mechanically induced long period holey fiber grating
    Anzueto-Sanchez, Gilberto
    Martinez-Rios, Alejandro
    Torres-Gomez, Ismael
    Ceballos-Herrera, Daniel
    Selvas-Aguilar, Romeo
    Duran-Ramirez, Victor
    OPTICAL REVIEW, 2007, 14 (02) : 75 - 77
  • [13] Fiber coupler based on dual-core fiber long-period grating
    Wang, Meng
    Wei, Zengxi
    Yang, Jing
    Li, Ping
    Shi, Jinhui
    Guan, Chunying
    ADVANCED SENSOR SYSTEMS AND APPLICATIONS VIII, 2018, 10821
  • [14] A Fiber Bragg Grating Vibration Interrogation System Based on a Cascaded Long-Period Fiber Grating
    Zou, Hongbo
    Liang, Dakai
    Zeng, Jie
    Li, Kun
    Zhou, Yifei
    APPLIED INFORMATICS AND COMMUNICATION, PT 4, 2011, 227 : 211 - 219
  • [15] A Fiber Bragg Grating Vibration Interrogation System Based on A Cascaded Long-period Fiber Grating
    Zou, Hongbo
    Liang, Dakai
    Zeng, Jie
    Li, Kun
    Zhou, Yifei
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL IV, 2010, : 111 - 114
  • [16] Laser-to-fiber coupling scheme by utilizing a lensed fiber integrated with a long-period fiber grating
    Chen, WT
    Wang, LA
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (05) : 501 - 503
  • [17] In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber
    Wang, Yiping
    Xiao, Limin
    Wang, D. N.
    Jin, Wei
    OPTICS LETTERS, 2007, 32 (09) : 1035 - 1037
  • [18] Optical fiber long-period grating sensors
    Fiber and Electro-Opt. Res. Center, Bradley Dept. of Elec. Engineering, State University, Blacksburg, VA 24061-0356, United States
    不详
    Opt. Lett., 9 (692-694):
  • [19] Special long-period fiber grating devices
    Rao, Y. J.
    Zhu, T.
    PASSIVE COMPONENTS AND FIBER-BASED DEVICES IV, PTS 1 AND 2, 2007, 6781