Gas identification using density models

被引:22
作者
Brahim-Belhouari, S [1 ]
Bermak, A [1 ]
机构
[1] Hong Kong Univ Sci & Technol, EEE Dept, Kowloon, Hong Kong, Peoples R China
关键词
classification; gas sensor array; mixture models; pattern recognition;
D O I
10.1016/j.patrec.2004.09.020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we compare the accuracy of a range of advanced density models for gas identification from sensor array signals. Density estimation is applied in the construction of classifiers through the use of Bayes rule. Experiments on real sensors' data proved the effectiveness of the approach with an excellent classification performance. We compare the classification accuracy of four density models, Gaussian mixture models, Generative topographic mapping, Probabilistic PCA mixture and K nearest neighbors. On our gas sensors data, the best performance was achieved by Gaussian mixture models. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:699 / 706
页数:8
相关论文
共 10 条
  • [1] Bishop C. M., 1996, Neural networks for pattern recognition
  • [2] GTM: The generative topographic mapping
    Bishop, CM
    Svensen, M
    Williams, CKI
    [J]. NEURAL COMPUTATION, 1998, 10 (01) : 215 - 234
  • [3] Pattern Analysis for Machine Olfaction: A Review
    Gutierrez-Osuna, Ricardo
    [J]. IEEE SENSORS JOURNAL, 2002, 2 (03) : 189 - 202
  • [4] Feed-forward neural networks and topographic mappings for exploratory data analysis
    Lowe, D
    Tipping, M
    [J]. NEURAL COMPUTING & APPLICATIONS, 1996, 4 (02) : 83 - 95
  • [5] MCLACHALAN G, 1988, MIXTURE MODELS INFER
  • [6] A low-power CMOS compatible integrated gas sensor using maskless tin oxide sputtering
    Sheng, LY
    Tang, ZN
    Wu, J
    Chan, PCH
    Sin, JKO
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 1998, 49 (1-2) : 81 - 87
  • [7] Probabilistic principal component analysis
    Tipping, ME
    Bishop, CM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 611 - 622
  • [8] Titterington D.M., 1985, Statistical analysis of finite mixture distributions
  • [9] VASCONCELOS N, 2000, IEEE INT C MULT EXP, V2, P899
  • [10] ZHANG Y, 1994, P ICASSP C, V1, P613