Breakup of diminutive Rayleigh jets

被引:138
作者
van Hoeve, Wim [1 ,2 ]
Gekle, Stephan [1 ,2 ]
Snoeijer, Jacco H. [1 ,2 ]
Versluis, Michel [1 ,2 ]
Brenner, Michael P. [3 ]
Lohse, Detlef [1 ,2 ]
机构
[1] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
[3] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
DROP FORMATION; LIQUID JET; SATELLITE DROPS; DRIPPING FAUCET; CAPILLARY JETS; PINCH-OFF; GENERATION; DYNAMICS; AEROSOLS; DELIVERY;
D O I
10.1063/1.3524533
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Discharging a liquid from a nozzle at sufficient large velocity leads to a continuous jet that due to capillary forces breaks up into droplets. Here we investigate the formation of microdroplets from the breakup of micron-sized jets with ultra high-speed imaging. The diminutive size of the jet implies a fast breakup time scale tau(c) = root rho r(3)/gamma of the order of 100 ns, and requires imaging at 14 X 10(6) frames/s. We directly compare these experiments with a numerical lubrication approximation model that incorporates inertia, surface tension, and viscosity [J. Eggers and T. F. Dupont, J. Fluid Mech. 262, 205 (1994); X. D. Shi, M. P. Brenner, and S. R. Nagel, Science 265, 219 (1994)]. The lubrication model allows to efficiently explore the parameter space to investigate the effect of jet velocity and liquid viscosity on the formation of satellite droplets. In the phase diagram, we identify regions where the formation of satellite droplets is suppressed. We compare the shape of the droplet at pinch-off between the lubrication approximation model and a boundary-integral calculation, showing deviations at the final moment of the pinch-off. In spite of this discrepancy, the results on pinch-off times and droplet and satellite droplet velocity obtained from the lubrication approximation agree with the high-speed imaging results. (C) 2010 American Institute of Physics. [doi:10.1063/1.3524533]
引用
收藏
页数:11
相关论文
共 45 条
  • [1] Dripping-jetting transitions in a dripping faucet
    Ambravaneswaran, B
    Subramani, HJ
    Phillips, SD
    Basaran, OA
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (03) : 034501 - 1
  • [2] Drop formation from a capillary tube: Comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops
    Ambravaneswaran, B
    Wilkes, ED
    Basaran, OA
    [J]. PHYSICS OF FLUIDS, 2002, 14 (08) : 2606 - 2621
  • [3] Theoretical analysis of a dripping faucet
    Ambravaneswaran, B
    Phillips, SD
    Basaran, OA
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (25) : 5332 - 5335
  • [4] Formation of dispersions using "flow focusing" in microchannels
    Anna, SL
    Bontoux, N
    Stone, HA
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (03) : 364 - 366
  • [5] Small-scale free surface flows with breakup: Drop formation and emerging applications
    Basaran, OA
    [J]. AICHE JOURNAL, 2002, 48 (09) : 1842 - 1848
  • [6] The invisible jet
    Basaran, Osman A.
    Suryo, Ronald
    [J]. NATURE PHYSICS, 2007, 3 (10) : 679 - 680
  • [7] Targeting delivery of aerosols to different lung regions
    Bennett, WD
    Brown, JS
    Zeman, KL
    Hu, SC
    Scheuch, G
    Sommerer, K
    [J]. JOURNAL OF AEROSOL MEDICINE-DEPOSITION CLEARANCE AND EFFECTS IN THE LUNG, 2002, 15 (02): : 179 - 188
  • [8] DROP FORMATION IN A CIRCULAR LIQUID JET
    BOGY, DB
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 1979, 11 : 207 - 228
  • [9] Breakdown of scaling in droplet fission at high Reynolds number
    Brenner, MP
    Eggers, J
    Joseph, K
    Nagel, SR
    Shi, XD
    [J]. PHYSICS OF FLUIDS, 1997, 9 (06) : 1573 - 1590
  • [10] Scaling the drop size in coflow experiments
    Castro-Hernandez, E.
    Gundabala, V.
    Fernandez-Nieves, A.
    Gordillo, J. M.
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11