Height and Area Estimates for Constant Mean Curvature Graphs in E(κ, τ)-Spaces

被引:0
作者
Manzano, Jose M. [1 ]
Nelli, Barbara [2 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio Loc Coppito, I-67100 Laquila, Italy
基金
英国工程与自然科学研究理事会;
关键词
Minimal surfaces; Constant mean curvature; Homogeneous; 3-manifolds; Heisenberg group; Area estimates; Height estimates; MINIMAL GRAPHS; UNBOUNDED-DOMAINS; SURFACE EQUATION; MINKOWSKI SPACE; X R; HYPERSURFACES; MANIFOLDS;
D O I
10.1007/s12220-017-9810-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain area growth estimates for constant mean curvature graphs in E(kappa, tau)-spaces with k <= 0, by finding sharp upper bounds for the volume of geodesic balls in E(kappa, tau). We focus on complete graphs and graphs with zero boundary values. For instance, we prove that entire graphs in E(kappa, tau) with critical mean curvature have at most cubic intrinsic area growth. We also obtain sharp upper bounds for the extrinsic area growth of graphs with zero boundary values, and study distinguished examples in detail such as invariant surfaces, k-noids, and ideal Scherk graphs. Finally, we give a relation between height and area growth of minimal graphs in the Heisenberg space (k = 0), and prove a Collin-Krust type estimate for such minimal graphs.
引用
收藏
页码:3441 / 3473
页数:33
相关论文
共 33 条
  • [21] Removable singularities for sections of Riemannian submersions of prescribed mean curvature
    Leandro, Claudemir
    Rosenberg, Harold
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (04): : 445 - 452
  • [22] Lee H., 2013, ARXIV13017241MATHDG
  • [23] Extensions of the duality between minimal surfaces and maximal surfaces
    Lee, Hojoo
    [J]. GEOMETRIAE DEDICATA, 2011, 151 (01) : 373 - 386
  • [24] Manzano JM, 2015, J GEOM ANAL, V25, P336, DOI 10.1007/s12220-013-9431-8
  • [25] ON THE CLASSIFICATION OF KILLING SUBMERSIONS AND THEIR ISOMETRIES
    Manzano, Jose M.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2014, 270 (02) : 367 - 392
  • [26] Parabolic stable surfaces with constant mean curvature
    Manzano, Jose M.
    Perez, Joaquin
    Magdalena Rodriguez, M.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 42 (1-2) : 137 - 152
  • [27] Minimal graphs in PSL2(R) over unbounded domains
    Melo, Sofia
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (01): : 91 - 116
  • [28] SADDLE TOWERS AND MINIMAL k-NOIDS IN H2 x R
    Morabito, Filippo
    Magdalena Rodriguez, M.
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2012, 11 (02) : 333 - 349
  • [29] Nelli B, 2017, CALC VAR PARTIAL DIF, V56, DOI 10.1007/s00526-017-1123-y
  • [30] Plehnert J., 2014, Ill. J. Math., V58, P233