A Reconfigurable Accelerator for Generative Adversarial Network Training Based on FPGA

被引:2
|
作者
Yin, Tongtong [1 ]
Mao, Wendong [1 ]
Lu, Jinming [1 ]
Wang, Zhongfeng [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing, Peoples R China
来源
2021 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2021) | 2021年
基金
中国国家自然科学基金;
关键词
Generative adversarial networks; hardware accelerator; training accelerator; reconfigurable design; FPGA;
D O I
10.1109/ISVLSI51109.2021.00036
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, generative adversarial networks (GANs) have been widely applied in various tasks, demonstrating outstanding performance, such as image generation, style transfer, and video generation. However, due to their high computation complexity and large amount of intermediate data to be stored, the on-device learning that trains GANs on embedded platforms remains a very challenging problem. In this work, we propose an FPGA-based reconfigurable accelerator for efficient GAN training. Firstly, the cascaded fast FIR algorithm (CFFA) is optimized towards GAN training, and a fast convolution processing element (FCPE) based on the optimized algorithm is introduced to support various computation patterns during GAN training. Secondly, a well optimized architecture on the basis of FCPEs is presented, which is flexible to support forward, backward, and weight gradient phases of GAN training. Finally, training of a prevailing network (DCGAN) is implemented on Xilinx VCU108 platform with our methods. Experimental results show that our design achieves 315.18 GOPS and 83.87 GOPS/W in terms of throughput and energy efficiency, respectively. Our accelerator achieves 4.0 x improvement over the state-of-the-art design in energy efficiency.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 50 条
  • [21] Restoration of damaged artworks based on a generative adversarial network
    Praveen Kumar
    Varun Gupta
    Multimedia Tools and Applications, 2023, 82 : 40967 - 40985
  • [22] Face illumination normalization based on generative adversarial network
    Guo, Dequan
    Zhu, Lingrui
    Ling, Shenggui
    Li, Tianxiang
    Zhang, Gexiang
    Yang, Qiang
    Wang, Ping
    Jiang, Shiqi
    Wu, Sidong
    Liu, Junbao
    NATURAL COMPUTING, 2023, 22 (01) : 105 - 117
  • [23] Implementation of Lightweight Spacecraft Fault Diagnosis Network Based on FPGA Accelerator
    Lai, Jinlin
    Wang, Siye
    Nie, Saijun
    Li, Yuandong
    Mai, Ji
    2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND ARTIFICIAL INTELLIGENCE, CCAI 2024, 2024, : 497 - 502
  • [24] NEGAN: Network Embedding based on Generative Adversarial Networks
    Ban, Yinfeng
    Pu, Juhua
    Chen, Yujun
    Wang, Yuanhong
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [25] SMOTE oversampling algorithm based on generative adversarial network
    Liu, Yu
    Liu, Qicheng
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (04):
  • [26] An FPGA-Based Energy-Efficient Reconfigurable Convolutional Neural Network Accelerator for Object Recognition Applications
    Li, Jixuan
    Un, Ka-Fai
    Yu, Wei-Han
    Mak, Pui-In
    Martins, Rui P.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (09) : 3143 - 3147
  • [27] Restoration of damaged artworks based on a generative adversarial network
    Kumar, Praveen
    Gupta, Varun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (26) : 40967 - 40985
  • [28] Controllable Generative Adversarial Network
    Lee, Minhyeok
    Seok, Junhee
    IEEE ACCESS, 2019, 7 : 28158 - 28169
  • [29] Network Traffic Anomaly Detection Based on Generative Adversarial Network and Transformer
    Wang, Zhurong
    Zhou, Jing
    Hei, Xinhong
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 228 - 235
  • [30] Efficient Dynamic Reconfigurable CNN Accelerator for Edge Intelligence Computing on FPGA
    Shi, Kaisheng
    Wang, Mingwei
    Tan, Xin
    Li, Qianghua
    Lei, Tao
    INFORMATION, 2023, 14 (03)