Tailoring the interfaces of silicon/carbon nanotube for high rate lithium-ion battery anodes

被引:60
|
作者
Zhang, Ziqi [1 ,2 ]
Han, Xiang [1 ,2 ]
Li, Lianchuan [1 ,2 ]
Su, Pengfei [1 ,2 ]
Huang, Wei [1 ,2 ]
Wang, Jianyuan [1 ,2 ]
Xu, Jianfang [1 ,2 ]
Li, Cheng [1 ,2 ]
Chen, Songyan [1 ,2 ]
Yang, Yong [3 ]
机构
[1] Xiamen Univ, Jiujiang Res Inst, Dept Phys, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Collaborat Innovat Ctr Optoelect Semicond & Effic, Xiamen 361005, Fujian, Peoples R China
[3] Xiamen Univ, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Micrometer-sized silicon anodes; Carbon nanotubes; Cu3Si silicide; High rate; Structural stability; SI ANODES; GROWTH; ELECTRODES; PARTICLES; CATALYST;
D O I
10.1016/j.jpowsour.2019.227593
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
potholed Micrometer-sized silicon powders, due to its high specific capacity, easy accessibility, and low cost, have been regarded as an attractive anode material for lithium-ion batteries. The severer mechanical instability and high inter-particle resistance during cycling, however, hinder its further application. In this work, a novel potholed micrometer-sized silicon powders (PMSi)/carbon nanotubes (CNT)/C electrode is proposed. The resulting three-dimensional (3D) conductive framework and multi-point contact network exhibit ideal structural stability and high-rate cycling property. Hence, the volume resistivity of PMSi/CNT/C (157 Omega m) is reduced significantly relative to traditional PMSi/commercial carbon nanotubes (CCT)/C composite (400 Omega m). By testing the fabricated half-cell LIB with the PMSi/CNT/C composite anode, high reversible specific capacity of 2533 mAh g(-1) with a remarkable high initial coulombic efficiency of 89.07% and over 840 mA h g(-1) for 1000 cycles at 2 A g(-1) is measured. Even at the rate of 20 A g(-1), the PMSi/CNT/C electrode shows a capacity of 463 mAh g(-1). A full cell contained the PMSi/CNT/C anode and a LiFePO4/LiMn2O4 cathode successfully ignites an LED array (similar to 1.5 W), further demonstrating its outstanding electrical driving property.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Silicon nanoparticle and carbon nanotube loaded carbon nanofibers for use in lithium-ion battery anodes
    Nguyen Trung Hieu
    Suk, Jungdon
    Kim, Dong Wook
    Chung, Ok Hee
    Park, Jun Seo
    Kang, Yongku
    SYNTHETIC METALS, 2014, 198 : 36 - 40
  • [2] Silicon/disordered carbon nanocomposites for lithium-ion battery anodes
    Guo, ZP
    Milin, E
    Wang, JZ
    Chen, J
    Liu, HK
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) : A2211 - A2216
  • [3] Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery
    Wang, Wei
    Epur, Rigved
    Kumta, Prashant N.
    ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (05) : 429 - 432
  • [4] Tailoring the Polymer-Derived Carbon Encapsulated Silicon Nanoparticles for High-Performance Lithium-Ion Battery Anodes
    Ma, Qiang
    Xie, Hongwei
    Qu, Jiakang
    Zhao, Zhuqing
    Zhang, Beilei
    Song, Qiushi
    Xing, Pengfei
    Yin, Huayi
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) : 268 - 278
  • [5] Biomass-Based Silicon and Carbon for Lithium-Ion Battery Anodes
    Pillai, Manoj Muraleedharan
    Kalidas, Nathiya
    Zhao, Xiuyun
    Lehto, Vesa-Pekka
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [6] Tailoring the Electrode Interface with Enhanced Electron Transfer for High-Rate Lithium-Ion Battery Anodes
    Ji, Junyi
    Cui, Xinghong
    Zhu, Yanfang
    Lai, Linfei
    Zhao, Xin
    Zhang, Yuxin
    Zhang, Lili
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (23) : 6643 - 6648
  • [7] Tailoring the Microstructure of Porous Carbon Spheres as High Rate Performance Anodes for Lithium-Ion Batteries
    Liang, Zikun
    Li, Ang
    Deng, Kaiming
    Ouyang, Bo
    Kan, Erjun
    MATERIALS, 2023, 16 (13)
  • [8] Preparation and application as anodes in lithium-ion battery of composite carbon nanotube paper
    Wu, Xiao-Yong
    Sun, Xiao-Gang
    Nie, Yan-Yan
    Pang, Zhi-Peng
    Liu, Zhen-Hong
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2015, 44 (10): : 2771 - 2777
  • [9] High-Rate Lithium-ion Battery Anodes Based on Silicon-Coated Vertically Aligned Carbon Nanofibers
    Klankowski, Steven A.
    Pandey, Gaind P.
    Cruden, Brett A.
    Liu, Jianwei
    Wu, Judy
    Rojeski, Ronald A.
    Li, Jun
    2014 IEEE 14TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2014, : 22 - 23
  • [10] Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for lithium-ion battery anodes
    Lee, Sang Joon
    Joe, Yun Sang
    Yeon, Jeong Seok
    Min, Dong Hyun
    Shin, Kang Ho
    Baek, Sang Ha
    Xiong, Peixun
    Nakhanivej, Puritut
    Park, Ho Seok
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (11) : 15627 - 15638