Tailoring the interfaces of silicon/carbon nanotube for high rate lithium-ion battery anodes

被引:65
作者
Zhang, Ziqi [1 ,2 ]
Han, Xiang [1 ,2 ]
Li, Lianchuan [1 ,2 ]
Su, Pengfei [1 ,2 ]
Huang, Wei [1 ,2 ]
Wang, Jianyuan [1 ,2 ]
Xu, Jianfang [1 ,2 ]
Li, Cheng [1 ,2 ]
Chen, Songyan [1 ,2 ]
Yang, Yong [3 ]
机构
[1] Xiamen Univ, Jiujiang Res Inst, Dept Phys, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Collaborat Innovat Ctr Optoelect Semicond & Effic, Xiamen 361005, Fujian, Peoples R China
[3] Xiamen Univ, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Micrometer-sized silicon anodes; Carbon nanotubes; Cu3Si silicide; High rate; Structural stability; SI ANODES; GROWTH; ELECTRODES; PARTICLES; CATALYST;
D O I
10.1016/j.jpowsour.2019.227593
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
potholed Micrometer-sized silicon powders, due to its high specific capacity, easy accessibility, and low cost, have been regarded as an attractive anode material for lithium-ion batteries. The severer mechanical instability and high inter-particle resistance during cycling, however, hinder its further application. In this work, a novel potholed micrometer-sized silicon powders (PMSi)/carbon nanotubes (CNT)/C electrode is proposed. The resulting three-dimensional (3D) conductive framework and multi-point contact network exhibit ideal structural stability and high-rate cycling property. Hence, the volume resistivity of PMSi/CNT/C (157 Omega m) is reduced significantly relative to traditional PMSi/commercial carbon nanotubes (CCT)/C composite (400 Omega m). By testing the fabricated half-cell LIB with the PMSi/CNT/C composite anode, high reversible specific capacity of 2533 mAh g(-1) with a remarkable high initial coulombic efficiency of 89.07% and over 840 mA h g(-1) for 1000 cycles at 2 A g(-1) is measured. Even at the rate of 20 A g(-1), the PMSi/CNT/C electrode shows a capacity of 463 mAh g(-1). A full cell contained the PMSi/CNT/C anode and a LiFePO4/LiMn2O4 cathode successfully ignites an LED array (similar to 1.5 W), further demonstrating its outstanding electrical driving property.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Superionic solids: composite electrolyte phase - an overview [J].
Agrawal, RC ;
Gupta, RK .
JOURNAL OF MATERIALS SCIENCE, 1999, 34 (06) :1131-1162
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter [J].
Ashuri, Maziar ;
He, Qianran ;
Shaw, Leon L. .
NANOSCALE, 2016, 8 (01) :74-103
[4]   Carbon nanotube electronics [J].
Avouris, P ;
Appenzeller, J ;
Martel, R ;
Wind, SJ .
PROCEEDINGS OF THE IEEE, 2003, 91 (11) :1772-1784
[5]   Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching [J].
Bang, Byoung Man ;
Kim, Hyunjung ;
Song, Hyun-Kon ;
Cho, Jaephil ;
Park, Soojin .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (12) :5013-5019
[6]   Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries [J].
Cai, Hongyan ;
Han, Kai ;
Jiang, Heng ;
Wang, Jingwen ;
Liu, Hui .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2017, 109 :9-17
[7]   The Schottky barrier height of the rectifying Cu/pyronline-B/p-Si, Au/pyronine-B/p-Si, Sn/pyronine-B/p-Si and Al/pyronine-B/p-Si contacts [J].
Çakar, M ;
Temirci, C ;
Türüt, A .
SYNTHETIC METALS, 2004, 142 (1-3) :177-180
[8]   Micron-sized Fe-Cu-Si ternary composite anodes for high energy Li-ion batteries [J].
Chae, Sujong ;
Ko, Minseong ;
Park, Seungkyu ;
Kim, Namhyung ;
Ma, Jiyoung ;
Cho, Jaephil .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (04) :1251-1257
[9]   Catalytically assisted tip growth mechanism for single-wall carbon nanotubes [J].
Charlier, J. -C. ;
Amara, H. ;
Lambin, Ph. .
ACS NANO, 2007, 1 (03) :202-207
[10]  
Charlier JC, 1997, SCIENCE, V275, P646, DOI 10.1126/science.275.5300.647