Activated Notch counteracts Ikaros tumor suppression in mouse and human T-cell acute lymphoblastic leukemia

被引:26
|
作者
Witkowski, M. T. [1 ,2 ]
Cimmino, L. [1 ,2 ,3 ]
Hu, Y. [4 ]
Trimarchi, T. [3 ]
Tagoh, H. [5 ]
McKenzie, M. D. [1 ,2 ]
Best, S. A. [1 ,2 ]
Tuohey, L. [1 ,2 ]
Willson, T. A. [1 ,2 ]
Nutt, S. L. [2 ,6 ]
Busslinger, M. [5 ]
Aifantis, I. [3 ]
Smyth, G. K. [4 ,7 ]
Dickins, R. A. [1 ,2 ]
机构
[1] Walter & Eliza Hall Inst Med Res, Div Mol Med, 1G Royal Parade, Parkville, Vic 3052, Australia
[2] Univ Melbourne, Dept Med Biol, Parkville, Vic 3052, Australia
[3] NYU, Sch Med, Dept Pathol, New York, NY USA
[4] Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic 3052, Australia
[5] AFFiRiS AG, Vienna Bioctr, Dept Math & Stat, A-1030 Vienna, Austria
[6] Walter & Eliza Hall Inst Med Res, Mol Immunol Div, Parkville, Vic 3052, Australia
[7] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3052, Australia
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会; 美国国家卫生研究院; 欧洲研究理事会;
关键词
C-MYC; B-CELL; GENETIC INACTIVATION; TRANSCRIPTION FACTOR; MICE; EXPRESSION; DIFFERENTIATION; TARGET; EVENT; LEUKEMOGENESIS;
D O I
10.1038/leu.2015.27
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Activating NOTCH1 mutations occur in similar to 60% of human T-cell acute lymphoblastic leukemias (T-ALLs), and mutations disrupting the transcription factor IKZF1 (IKAROS) occur in similar to 5% of cases. To investigate the regulatory interplay between these driver genes, we have used a novel transgenic RNA interference mouse model to produce primary T-ALLs driven by reversible Ikaros knockdown. Restoring endogenous Ikaros expression in established T-ALL in vivo acutely represses Notch1 and its oncogenic target genes including Myc, and in multiple primary leukemias causes disease regression. In contrast, leukemias expressing high levels of endogenous or engineered forms of activated intracellular Notch1 (ICN1) resembling those found in human T-ALL rapidly relapse following Ikaros restoration, indicating that ICN1 functionally antagonizes Ikaros in established disease. Furthermore, we find that IKAROS mRNA expression is significantly reduced in a cohort of primary human T-ALL patient samples with activating NOTCH1/FBXW7 mutations, but is upregulated upon acute inhibition of aberrant NOTCH signaling across a panel of human T-ALL cell lines. These results demonstrate for the first time that aberrant NOTCH activity compromises IKAROS function in mouse and human T-ALL, and provide a potential explanation for the relative infrequency of IKAROS gene mutations in human T-ALL.
引用
收藏
页码:1301 / 1311
页数:11
相关论文
共 50 条
  • [21] Therapeutic potential of Notch inhibition in T-cell acute lymphoblastic leukemia: rationale, caveats and promises
    Sarmento, Leonor M.
    Barata, Joao T.
    EXPERT REVIEW OF ANTICANCER THERAPY, 2011, 11 (09) : 1403 - 1415
  • [22] NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity
    Armstrong, Florence
    de la Grange, Philippe Brunet
    Gerby, Bastien
    Rouyez, Marie-Christine
    Calvo, Julien
    Fontenay, Michaela
    Boissel, Nicolas
    Dombret, Herve
    Baruchel, Andre
    Landman-Parker, Judith
    Romeo, Paul-Henri
    Ballerini, Paola
    Pflumio, Francoise
    BLOOD, 2009, 113 (08) : 1730 - 1740
  • [23] Adoptive Cell Therapy for Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia
    Lulla, Premal D.
    Mamonkin, Maksim
    Brenner, Malcolm K.
    CANCER JOURNAL, 2019, 25 (03): : 199 - 207
  • [24] The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia
    Gianni, Francesca
    Belver, Laura
    Ferrando, Adolfo
    COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2020, 10 (03):
  • [25] Leukemia-initiating cell activity requires calcineurin in T-cell acute lymphoblastic leukemia
    Gachet, S.
    Genesca, E.
    Passaro, D.
    Irigoyen, M.
    Alcalde, H.
    Clemenson, C.
    Poglio, S.
    Pflumio, F.
    Janin, A.
    Lasgi, C.
    Dodier, S.
    Soyer, M.
    Dumenil, G.
    Ghysdael, J.
    LEUKEMIA, 2013, 27 (12) : 2289 - 2300
  • [26] Inactivation of LEF1 in T-cell acute lymphoblastic leukemia
    Gutierrez, Alejandro
    Sanda, Takaomi
    Ma, Wenxue
    Zhang, Jianhua
    Grebliunaite, Ruta
    Dahlberg, Suzanne
    Neuberg, Donna
    Protopopov, Alexei
    Winter, Stuart S.
    Larson, Richard S.
    Borowitz, Michael J.
    Silverman, Lewis B.
    Chin, Lynda
    Hunger, Stephen P.
    Jamieson, Catriona
    Sallan, Stephen E.
    Look, A. Thomas
    BLOOD, 2010, 115 (14) : 2845 - 2851
  • [27] Deregulated WNT signaling in childhood T-cell acute lymphoblastic leukemia
    Ng, O. H.
    Erbilgin, Y.
    Firtina, S.
    Celkan, T.
    Karakas, Z.
    Aydogan, G.
    Turkkan, E.
    Yildirmak, Y.
    Timur, C.
    Zengin, E.
    van Dongen, J. J. M.
    Staal, F. J. T.
    Ozbek, U.
    Sayitoglu, M.
    BLOOD CANCER JOURNAL, 2014, 4 : e192 - e192
  • [28] DHODH: a promising target in the treatment of T-cell acute lymphoblastic leukemia
    Sexauer, Amy N.
    Alexe, Gabriela
    Gustafsson, Karin
    Zanetakos, Elizabeth
    Milosevic, Jelena
    Ayres, Mary
    Gandhi, Varsha
    Pikman, Yana
    Stegmaier, Kimberly
    Sykes, David B.
    BLOOD ADVANCES, 2023, 7 (21) : 6685 - 6701
  • [29] Notch-Signaling Deregulation Induces Myeloid-Derived Suppressor Cells in T-Cell Acute Lymphoblastic Leukemia
    Grazioli, Paola
    Orlando, Andrea
    Giordano, Nike
    Noce, Claudia
    Peruzzi, Giovanna
    Abdollahzadeh, Behnaz
    Screpanti, Isabella
    Campese, Antonio Francesco
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [30] A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL)
    Mavrakis, Konstantinos J.
    Van der Meulen, Joni
    Wolfe, Andrew L.
    Liu, Xiaoping
    Mets, Evelien
    Taghon, Tom
    Khan, Aly A.
    Setti, Manu
    Rondou, Pieter
    Vandenberghe, Peter
    Delabesse, Eric
    Benoit, Yves
    Socci, Nicholas B.
    Leslie, Christina S.
    Van Vlierberghe, Pieter
    Speleman, Frank
    Wendel, Hans-Guido
    NATURE GENETICS, 2011, 43 (07) : 673 - U89