Spatial light interference microscopy (SLIM)

被引:568
作者
Wang, Zhuo [1 ]
Millet, Larry [2 ]
Mir, Mustafa [1 ]
Ding, Huafeng [1 ]
Unarunotai, Sakulsuk [3 ]
Rogers, John [3 ,4 ]
Gillette, Martha U. [2 ]
Popescu, Gabriel [1 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Elect & Comp Engn, Quantitat Light Imaging Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Cell & Dev Biol, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
来源
OPTICS EXPRESS | 2011年 / 19卷 / 02期
基金
美国国家科学基金会;
关键词
DIGITAL HOLOGRAPHIC MICROSCOPY; PHASE MICROSCOPY; DIFFRACTION TOMOGRAPHY; COMPUTED-TOMOGRAPHY; DYNAMICS; REFRACTOMETRY; CONTRAST;
D O I
10.1364/OE.19.001016
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present spatial light interference microscopy (SLIM) as a new optical microscopy technique, capable of measuring nanoscale structures and dynamics in live cells via interferometry. SLIM combines two classic ideas in light imaging: Zernike's phase contrast microscopy, which renders high contrast intensity images of transparent specimens, and Gabor's holography, where the phase information from the object is recorded. Thus, SLIM reveals the intrinsic contrast of cell structures and, in addition, renders quantitative optical path-length maps across the sample. The resulting topographic accuracy is comparable to that of atomic force microscopy, while the acquisition speed is 1,000 times higher. We illustrate the novel insight into cell dynamics via SLIM by experiments on primary cell cultures from the rat brain. SLIM is implemented as an add-on module to an existing phase contrast microscope, which may prove instrumental in impacting the light microscopy field at a large scale. (C) 2011 Optical Society of America
引用
收藏
页码:1016 / 1026
页数:11
相关论文
共 31 条
  • [1] Diffraction tomography using power extinction measurements
    Carney, PS
    Wolf, E
    Agarwal, GS
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (11): : 2643 - 2648
  • [2] Cell refractive index tomography by digital holographic microscopy
    Charrière, F
    Marian, A
    Montfort, F
    Kuehn, J
    Colomb, T
    Cuche, E
    Marquet, P
    Depeursinge, C
    [J]. OPTICS LETTERS, 2006, 31 (02) : 178 - 180
  • [3] Living specimen tomography by digital holographic microscopy:: morphometry of testate amoeba
    Charriere, Florian
    Pavillon, Nicolas
    Colomb, Tristan
    Depeursinge, Christian
    Heger, Thierry J.
    Mitchell, Edward A. D.
    Marquet, Pierre
    Rappaz, Benjamin
    [J]. OPTICS EXPRESS, 2006, 14 (16) : 7005 - 7013
  • [4] Validity of diffraction tomography based on the first Born and the first Rytov approximations
    Chen, BQ
    Stamnes, JJ
    [J]. APPLIED OPTICS, 1998, 37 (14): : 2996 - 3006
  • [5] Tomographic phase microscopy
    Choi, Wonshik
    Fang-Yen, Christopher
    Badizadegan, Kamran
    Oh, Seungeun
    Lue, Niyom
    Dasari, Ramachandra R.
    Feld, Michael S.
    [J]. NATURE METHODS, 2007, 4 (09) : 717 - 719
  • [6] Spectral-domain phase microscopy
    Choma, MA
    Ellerbee, AK
    Yang, CH
    Creazzo, TL
    Izatt, JA
    [J]. OPTICS LETTERS, 2005, 30 (10) : 1162 - 1164
  • [7] Instantaneous spatial light interference microscopy
    Ding, Huafeng
    Popescu, Gabriel
    [J]. OPTICS EXPRESS, 2010, 18 (02): : 1569 - 1575
  • [8] Optical properties of tissues quantified by Fourier-transform light scattering
    Ding, Huafeng
    Nguyen, Freddy
    Boppart, Stephen A.
    Popescu, Gabriel
    [J]. OPTICS LETTERS, 2009, 34 (09) : 1372 - 1374
  • [9] A NEW MICROSCOPIC PRINCIPLE
    GABOR, D
    [J]. NATURE, 1948, 161 (4098) : 777 - 778
  • [10] Relation between computed tomography and diffraction tomography
    Gbur, G
    Wolf, E
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (09): : 2132 - 2137