On Archimedean triangular norms

被引:32
|
作者
Jenei, S [1 ]
机构
[1] Eotvos Lorand Univ, Dept Comp Sci, H-1088 Budapest, Hungary
关键词
operations; ana; additive generator; Archimedean property; uniform convergence;
D O I
10.1016/S0165-0114(97)00021-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The behaviour of the additive generator functions related to a sequence of convergent continuous Archimedean triangular norm (where the limit triangular norm is continuous Archimedean) is examined in this paper. It is proved that the related generator functions converge to the generator function of the limit triangular norm in some sense under the assumption that the limit triangular norm is strict. A bit weaker convergence is proved if the limit triangular norm has 0-divisor. An example is given for the fact that the stronger type of convergence cannot be obtained in the '0-divisor limit' case. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:179 / 186
页数:8
相关论文
共 50 条
  • [41] Fuzzy Digital Filters with Triangular Norms
    Butkiewicz, Bohdan S.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2010, 6113 : 19 - 26
  • [42] A note on divisible discrete triangular norms
    Kouchakinejad, F.
    Stupfianova, A.
    Seliga, A.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2022, 19 (01): : 73 - 81
  • [43] Dominance is not transitive on continuous triangular norms
    Peter Sarkoci
    Aequationes mathematicae, 2008, 75 : 201 - 207
  • [44] Semi-divisible triangular norms
    Mesiarova-Zemankova, A.
    SOFT COMPUTING, 2008, 12 (06) : 535 - 542
  • [45] Estimates for Sobolev Norms of Triangular Mappings
    Zhdanov, R. I.
    Ovsienko, Yu. V.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2007, 62 (01) : 1 - 4
  • [46] Note on the limit property of triangular norms
    Chen, Meng
    Wang, Xue-Ping
    Journal of Intelligent and Fuzzy Systems, 2024, 47 (3-4): : 169 - 175
  • [47] Further properties of reversible triangular norms
    Ouyang, Yao
    Li, Jun
    Fang, Jinxuan
    FUZZY SETS AND SYSTEMS, 2007, 158 (22) : 2504 - 2509
  • [48] Cross-migrative triangular norms
    Fodor, Janos
    Klement, Erich Peter
    Mesiar, Radko
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2012, 27 (05) : 411 - 428
  • [49] Geometry of generators of triangular norms and copulas
    Houskova, Kamila
    Navara, Mirko
    DEPENDENCE MODELING, 2024, 12 (01):
  • [50] Convex combinations of nilpotent triangular norms
    Petrik, Milan
    Sarkoci, Peter
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) : 271 - 275