Clustering of COVID-19 data for knowledge discovery using c-means and fuzzy c-means

被引:16
|
作者
Afzal, Asif [1 ]
Ansari, Zahid [2 ]
Alshahrani, Saad [3 ]
Raj, Arun K. [4 ]
Kuruniyan, Mohamed Saheer [5 ]
Saleel, C. Ahamed [3 ]
Nisar, Kottakkaran Sooppy [6 ]
机构
[1] Visvesvaraya Technol Univ, Dept Mech Engn, PA Coll Engn, Belagavi, Mangaluru, India
[2] Aligarh Muslim Univ, Univ Polytech, Elect Engn Sect, Aligarh, Uttar Pradesh, India
[3] King Khalid Univ, Dept Mech Engn, Coll Engn, POB 394, Abha 61421, Saudi Arabia
[4] Indian Inst Technol, Dept Mech Engn, Bombay 400076, Maharashtra, India
[5] King Khalid Univ, Dept Dent Technol, Coll Appl Med Sci, Asir Abha, Saudi Arabia
[6] Prince Sattam bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Al Kharj, Saudi Arabia
关键词
COVID-19; c-Means; Fuzzy c-means; Validity index; Location; FRAMEWORK;
D O I
10.1016/j.rinp.2021.104639
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the partitioning clustering of COVID-19 data using c-Means (cM) and Fuzy c-Means (Fc-M) algorithms is carried out. Based on the data available from January 2020 with respect to location, i.e., longitude and latitude of the globe, the confirmed daily cases, recoveries, and deaths are clustered. In the analysis, the maximum cluster size is treated as a variable and is varied from 5 to 50 in both algorithms to find out an optimum number. The performance and validity indices of the clusters formed are analyzed to assess the quality of clusters. The validity indices to understand all the COVID-19 clusters' quality are analysed based on the Zahid SC (Separation Compaction) index, Xie-Beni Index, Fukuyama-Sugeno Index, Validity function, PC (performance coefficient), and CE (entropy) indexes. The analysis results pointed out that five clusters were identified as a major centroid where the pandemic looks concentrated. Additionally, the observations revealed that mainly the pandemic is distributed easily at any global location, and there are several centroids of COVID-19, which primarily act as epicentres. However, the three main COVID-19 clusters identified are 1) cases with value <50,000, 2) cases with a value between 0.1 million to 2 million, and 3) cases above 2 million. These centroids are located in the US, Brazil, and India, where the rest of the small clusters of the pandemic look oriented. Furthermore, the Fc-M technique seems to provide a much better cluster than the c-M algorithm.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Alternative c-means clustering algorithms
    Wu, KL
    Yang, MS
    PATTERN RECOGNITION, 2002, 35 (10) : 2267 - 2278
  • [42] A modified C-means clustering algorithm
    El-Mouadib, Faraj A.
    Zubi, Zakaria Suliman
    Talhi, Halima S.
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON DATA NETWORKS, COMMUNICATIONS, COMPUTERS (DNCOCO '09), 2009, : 85 - +
  • [43] Clustering Aluminum Smelting Potlines Using Fuzzy C-Means and K-Means Algorithms
    de Lima, Flavia A. N.
    de Souza, Alan M. F.
    Soares, Fabio M.
    Cardoso, Diego Lisboa
    de Oliveira, Roberto C. L.
    LIGHT METALS 2017, 2017, : 589 - 597
  • [44] Safe Semi-Supervised Fuzzy C-Means Clustering
    Gan, Haitao
    IEEE ACCESS, 2019, 7 : 95659 - 95664
  • [45] Regularized fuzzy c-means method for brain tissue clustering
    Hou, Z.
    Qian, W.
    Huang, S.
    Hu, Q.
    Nowinski, W. L.
    PATTERN RECOGNITION LETTERS, 2007, 28 (13) : 1788 - 1794
  • [46] A New Criterion for Improving Convergence of Fuzzy C-Means Clustering
    Perez-Ortega, Joaquin
    Moreno-Calderon, Carlos Fernando
    Roblero-Aguilar, Sandra Silvia
    Almanza-Ortega, Nelva Nely
    Frausto-Solis, Juan
    Pazos-Rangel, Rodolfo
    Rodriguez-Lelis, Jose Maria
    AXIOMS, 2024, 13 (01)
  • [47] Multiple fuzzy c-means clustering algorithm in medical diagnosis
    Wu, Yanping
    Duan, Huilong
    Du, Shufeng
    TECHNOLOGY AND HEALTH CARE, 2015, 23 : S519 - S527
  • [48] Clustering System Group Customers through Fuzzy C-Means Clustering
    Hasanpour, Yaser
    Nemati, Shima
    Tavoli, Reza
    2018 4TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2018, : 161 - 165
  • [49] Hybrid Fuzzy C-Means Clustering Algorithm Oriented to Big Data Realms
    Perez-Ortega, Joaquin
    Silvia Roblero-Aguilar, Sandra
    Nely Almanza-Ortega, Nelva
    Frausto Solis, Juan
    Zavala-Diaz, Crispin
    Hernandez, Yasmin
    Landero-Najera, Vanesa
    AXIOMS, 2022, 11 (08)
  • [50] Missing value estimation for microarray data based on fuzzy C-means clustering
    Luo, JiaWei
    Yang, Tao
    Wang, Yan
    Eighth International Conference on High-Performance Computing in Asia-Pacific Region, Proceedings, 2005, : 611 - 616