Clustering of COVID-19 data for knowledge discovery using c-means and fuzzy c-means

被引:16
|
作者
Afzal, Asif [1 ]
Ansari, Zahid [2 ]
Alshahrani, Saad [3 ]
Raj, Arun K. [4 ]
Kuruniyan, Mohamed Saheer [5 ]
Saleel, C. Ahamed [3 ]
Nisar, Kottakkaran Sooppy [6 ]
机构
[1] Visvesvaraya Technol Univ, Dept Mech Engn, PA Coll Engn, Belagavi, Mangaluru, India
[2] Aligarh Muslim Univ, Univ Polytech, Elect Engn Sect, Aligarh, Uttar Pradesh, India
[3] King Khalid Univ, Dept Mech Engn, Coll Engn, POB 394, Abha 61421, Saudi Arabia
[4] Indian Inst Technol, Dept Mech Engn, Bombay 400076, Maharashtra, India
[5] King Khalid Univ, Dept Dent Technol, Coll Appl Med Sci, Asir Abha, Saudi Arabia
[6] Prince Sattam bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Al Kharj, Saudi Arabia
关键词
COVID-19; c-Means; Fuzzy c-means; Validity index; Location; FRAMEWORK;
D O I
10.1016/j.rinp.2021.104639
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the partitioning clustering of COVID-19 data using c-Means (cM) and Fuzy c-Means (Fc-M) algorithms is carried out. Based on the data available from January 2020 with respect to location, i.e., longitude and latitude of the globe, the confirmed daily cases, recoveries, and deaths are clustered. In the analysis, the maximum cluster size is treated as a variable and is varied from 5 to 50 in both algorithms to find out an optimum number. The performance and validity indices of the clusters formed are analyzed to assess the quality of clusters. The validity indices to understand all the COVID-19 clusters' quality are analysed based on the Zahid SC (Separation Compaction) index, Xie-Beni Index, Fukuyama-Sugeno Index, Validity function, PC (performance coefficient), and CE (entropy) indexes. The analysis results pointed out that five clusters were identified as a major centroid where the pandemic looks concentrated. Additionally, the observations revealed that mainly the pandemic is distributed easily at any global location, and there are several centroids of COVID-19, which primarily act as epicentres. However, the three main COVID-19 clusters identified are 1) cases with value <50,000, 2) cases with a value between 0.1 million to 2 million, and 3) cases above 2 million. These centroids are located in the US, Brazil, and India, where the rest of the small clusters of the pandemic look oriented. Furthermore, the Fc-M technique seems to provide a much better cluster than the c-M algorithm.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] SIC-Means: A Semi-fuzzy Approach for Clustering Data Streams Using C-Means
    Magdy, Amr
    Bassiouny, Mahmoud K.
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2010, 5998 : 96 - 107
  • [32] Fault Detection for Photovoltaic Systems Using Fuzzy C-Means Clustering
    Barbosa Jr, Jadir
    de Medeiros, Renan L. P.
    Ayres Jr, Florindo A. C.
    Chaves Filho, Joao Edgar
    Lucena Jr, Vicente F.
    Bessa, Iury
    2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
  • [33] Fault Diagnosis of an Electrohydraulic System by Using Fuzzy C-Means Clustering
    Guner, Hakan
    Ertugru, Seniz
    Tayyar, Gokhan Tansel
    INTELLIGENT AND FUZZY SYSTEMS, VOL 2, INFUS 2024, 2024, 1089 : 293 - 303
  • [34] Clustering using Vector Membership: An Extension of the Fuzzy C-Means Algorithm
    Ganguly, Srinjoy
    Bose, Digbalay
    Konar, Amit
    2013 FIFTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2013, : 27 - 32
  • [35] A novel approach to fuzzy c-Means clustering using kernel function
    Kochuveettil, Ani Davis
    Mathew, Raj
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2022, 16 (04): : 643 - 651
  • [36] Clustering Incomplete Data Using Kernel-Based Fuzzy C-means Algorithm
    Dao-Qiang Zhang
    Song-Can Chen
    Neural Processing Letters, 2003, 18 : 155 - 162
  • [37] Transformer Condition Assessment Using Fuzzy C-means Clustering Techniques
    Eke, Samuel
    Clerc, Guy
    Aka-Ngnui, Thomas
    Fofana, I.
    IEEE ELECTRICAL INSULATION MAGAZINE, 2019, 35 (02) : 47 - 55
  • [38] Clustering incomplete data using kernel-based fuzzy C-means algorithm
    Zhang, DQ
    Chen, SC
    NEURAL PROCESSING LETTERS, 2003, 18 (03) : 155 - 162
  • [39] A knowledge mining method for continuous data based on fuzzy C-means clustering and rough sets
    Xu, Xi
    Yao, Qionghui
    Shi, Min
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 5846 - 5849
  • [40] Color Image Segmentation Using Kernalized Fuzzy C-means Clustering
    Mahajan, Sneha M.
    Dubey, Yogita K.
    2015 FIFTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT2015), 2015, : 1142 - 1146