Anomalies in fluid dynamics: flows in a chiral background via variational principle

被引:6
作者
Abanov, A. G. [1 ,2 ]
Wiegmann, P. B. [3 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
[3] Univ Chicago, Kadanoff Ctr Theoret Phys, 5640 South Ellis Ave, Chicago, IL 60637 USA
关键词
chiral anomaly; variational principle; fluid dynamics; helicity; INVARIANTS;
D O I
10.1088/1751-8121/ac9202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study flows of barotropic perfect fluid under the simultaneous action of the electromagnetic field and the axial-vector potential, the external field conjugate to the fluid helicity. We obtain the deformation of the Euler equation by the axial-vector potential and the deformations of various currents by two external fields. We show that the divergence of the vector and axial currents are controlled by the chiral anomaly known in quantum field theories with Dirac fermions. We obtain these results by extending the variational principle for barotropic flows of a perfect fluid by coupling with the external axial-vector potential.
引用
收藏
页数:12
相关论文
共 28 条
  • [11] An introduction to relativistic hydrodynamics
    Gourgoulhon, E.
    [J]. Stellar Fluid Dynamics and Numerical Simulations: From the Sun to Neutron Stars, 2006, 21 : 43 - 79
  • [12] Effective actions for anomalous hydrodynamics
    Haehl, Felix M.
    Loganayagam, R.
    Rangamani, Mukund
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (03):
  • [13] The chiral magnetic effect in hydrodynamical approach
    Isachenkov, M. V.
    Sadofyev, A. V.
    [J]. PHYSICS LETTERS B, 2011, 697 (04) : 404 - 406
  • [14] Thermodynamics, gravitational anomalies and cones
    Jensen, Kristan
    Loganayagam, R.
    Yarom, Amos
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (02):
  • [15] INVARIANTS OF THE EULER EQUATIONS FOR IDEAL OR BAROTROPIC HYDRODYNAMICS AND SUPERCONDUCTIVITY IN D-DIMENSIONS
    KHESIN, BA
    CHEKANOV, YV
    [J]. PHYSICA D, 1989, 40 (01): : 119 - 131
  • [16] Conservation laws and evolution schemes in geodesic, hydrodynamic, and magnetohydrodynamic flows
    Markakis, Charalampos
    Uryu, Koji
    Gourgoulhon, Eric
    Nicolas, Jean-Philippe
    Andersson, Nils
    Pouri, Athina
    Witzany, Vojtech
    [J]. PHYSICAL REVIEW D, 2017, 96 (06)
  • [17] Divergence anomaly and Schwinger terms: Towards a consistent theory of anomalous classical fluids
    Mitra, Arpan Krishna
    Ghosh, Subir
    [J]. PHYSICAL REVIEW D, 2022, 106 (04)
  • [18] Hydrodynamics with gauge anomaly: Variational principle and Hamiltonian formulation
    Monteiro, Gustavo M.
    Abanov, Alexander G.
    Nair, V. P.
    [J]. PHYSICAL REVIEW D, 2015, 91 (12):
  • [19] Fluids, anomalies, and the chiral magnetic effect: A group-theoretic formulation
    Nair, V. P.
    Ray, Rashmi
    Roy, Shubho
    [J]. PHYSICAL REVIEW D, 2012, 86 (02):
  • [20] Relativistic hydrodynamics with general anomalous charges
    Neiman, Yasha
    Oz, Yaron
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (03):