Novel connections and gaps in ethylene signaling from the ER membrane to the nucleus

被引:30
作者
Cho, Young-Hee [1 ]
Yoo, Sang-Dong [1 ]
机构
[1] Korea Univ, Coll Life Sci & Biotechnol, Div Life Sci, Seoul 136713, South Korea
来源
FRONTIERS IN PLANT SCIENCE | 2015年 / 5卷
基金
新加坡国家研究基金会;
关键词
ethylene; signaling; MAPkinasekinaseKinase; CTR1; EIN2; EIN3; F-BOX PROTEINS; RECEPTOR GENE FAMILY; RESPONSE PATHWAY; FEEDBACK-REGULATION; NEGATIVE REGULATOR; ABSCISIC-ACID; ARABIDOPSIS; ETR1; EIN2; IMMUNITY;
D O I
10.3389/fpls.2014.00733
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The signaling of the plant hormone ethylene has been studied genetically, resulting in the identification of signaling components from membrane receptors to nuclear effectors. Among constituents of the hormone signaling pathway, functional links involving a putative mitogen-activated protein kinase kinase CONSTITUTIVE TRIPLE RESPONSE1 (CIA 1) and a membrane transporter like protein ETHYLENE INSENSITIVE2 (EIN2) have been missing for a long time. We now learn that EIN2 is cleaved and its C-terminal end moves to the nucleus upon ethylene perception at the membrane receptors, and then the C-terminal end of EIN2 in the nucleus supports EIN3-dependent ethylene-response gene expression. CTR1 kinase activity negatively controls the EIN2 cleavage process through direct phosphorylation. Despite the novel connection of CTR1 with EIN2 that explains a large portion of the missing links in ethylene signaling, our understanding still remains far from its completion. This focused review will summarize recent advances in the EIN3-dependent ethylene signaling mechanisms including CTR1 EIN2 functions with respect to EIN3 regulation and ethylene responses. This will also present several emerging issues that need to be addressed for the comprehensive understanding of signaling pathways of the invaluable plant hormone ethylene.
引用
收藏
页数:7
相关论文
共 62 条
[1]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[2]   Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis [J].
Alonso, JM ;
Stepanova, AN ;
Solano, R ;
Wisman, E ;
Ferrari, S ;
Ausubel, FM ;
Ecker, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) :2992-2997
[3]   Interactions between abscisic acid and ethylene signaling cascades [J].
Beaudoin, N ;
Serizet, C ;
Gosti, F ;
Giraudat, J .
PLANT CELL, 2000, 12 (07) :1103-1115
[4]   Short-term growth responses to ethylene in arabidopsis seedlings are EIN3/EIL1 independent [J].
Binder, BM ;
Mortimore, LA ;
Stepanova, AN ;
Ecker, JR ;
Bleecker, AB .
PLANT PHYSIOLOGY, 2004, 136 (02) :2921-2927
[5]   The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling [J].
Binder, Brad M. ;
Walker, Joseph M. ;
Gagne, Jennifer M. ;
Emborg, Thomas J. ;
Hemmann, Georg ;
Bleecker, Anthony B. ;
Vierstra, Richard D. .
PLANT CELL, 2007, 19 (02) :509-523
[6]   New Insight in Ethylene Signaling: Autokinase Activity of ETR1 Modulates the Interaction of Receptors and EIN2 [J].
Bisson, Melanie M. A. ;
Groth, Georg .
MOLECULAR PLANT, 2010, 3 (05) :882-889
[7]   EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1 [J].
Bisson, Melanie M. A. ;
Bleckmann, Andrea ;
Allekotte, Silke ;
Groth, Georg .
BIOCHEMICAL JOURNAL, 2009, 424 :1-6
[8]   INSENSITIVITY TO ETHYLENE CONFERRED BY A DOMINANT MUTATION IN ARABIDOPSIS-THALIANA [J].
BLEECKER, AB ;
ESTELLE, MA ;
SOMERVILLE, C ;
KENDE, H .
SCIENCE, 1988, 241 (4869) :1086-1089
[9]   ARABIDOPSIS ETHYLENE-RESPONSE GENE ETR1 - SIMILARITY OF PRODUCT TO 2-COMPONENT REGULATORS [J].
CHANG, C ;
KWOK, SF ;
BLEECKER, AB ;
MEYEROWITZ, EM .
SCIENCE, 1993, 262 (5133) :539-544
[10]   Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins [J].
Chao, QM ;
Rothenberg, M ;
Solano, R ;
Roman, G ;
Terzaghi, W ;
Ecker, JR .
CELL, 1997, 89 (07) :1133-1144