Geonomics: Forward-Time, Spatially Explicit, and Arbitrarily Complex Landscape Genomic Simulations

被引:15
作者
Hart, Drew E. Terasaki [1 ]
Bishop, Anusha P. [1 ]
Wang, Ian J. [1 ]
机构
[1] Univ Calif Berkeley, Coll Nat Resources, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
landscape ecology; evolutionary genetics; population dynamics; environmental change; spatial modeling; !text type='Python']Python[!/text; ADAPTIVE GENETIC-VARIATION; POPULATION-GENETICS; COMPUTER-SIMULATIONS; SCELOPORUS-GRACIOSUS; CLIMATE-CHANGE; EVOLUTIONARY; SELECTION; MODEL; TEMPERATURE; ADAPTATION;
D O I
10.1093/molbev/msab175
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding the drivers of spatial patterns of genomic diversity has emerged as a major goal of evolutionary genetics. The flexibility of forward-time simulation makes it especially valuable for these efforts, allowing for the simulation of arbitrarily complex scenarios in a way that mimics how real populations evolve. Here, we present Geonomics, a Python package for performing complex, spatially explicit, landscape genomic simulations with full spatial pedigrees that dramatically reduces user workload yet remains customizable and extensible because it is embedded within a popular, general-purpose language. We show that Geonomics results are consistent with expectations for a variety of validation tests based on classic models in population genetics and then demonstrate its utility and flexibility with a trio of more complex simulation scenarios that feature polygenic selection, selection on multiple traits, simulation on complex landscapes, and nonstationary environmental change. We then discuss runtime, which is primarily sensitive to landscape raster size, memory usage, which is primarily sensitive to maximum population size and recombination rate, and other caveats related to the model's methods for approximating recombination and movement. Taken together, our tests and demonstrations show that Geonomics provides an efficient and robust platform for population genomic simulations that capture complex spatial and evolutionary dynamics.
引用
收藏
页码:4634 / 4646
页数:13
相关论文
共 70 条
[1]   The emerging field of geogenomics: Constraining geological problems with genetic data [J].
Baker, Paul A. ;
Fritz, Sherilyn C. ;
Dick, Christopher W. ;
Eckert, Andrew J. ;
Horton, Brian K. ;
Manzoni, Stefano ;
Ribas, Camila C. ;
Garzione, Carmala N. ;
Battisti, David S. .
EARTH-SCIENCE REVIEWS, 2014, 135 :38-47
[2]   Selecting pseudo-absences for species distribution models: how, where and how many? [J].
Barbet-Massin, Morgane ;
Jiguet, Frederic ;
Albert, Cecile Helene ;
Thuiller, Wilfried .
METHODS IN ECOLOGY AND EVOLUTION, 2012, 3 (02) :327-338
[3]   Linking a mutation to survival in wild mice [J].
Barrett, Rowan D. H. ;
Laurent, Stefan ;
Mallarino, Ricardo ;
Pfeifer, Susanne P. ;
Xu, Charles C. Y. ;
Foll, Matthieu ;
Wakamatsu, Kazumasa ;
Duke-Cohan, Jonathan S. ;
Jensen, Jeffrey D. ;
Hoekstra, Hopi E. .
SCIENCE, 2019, 363 (6426) :499-+
[4]   Genomic signals of selection predict climate-driven population declines in a migratory bird [J].
Bay, Rachael A. ;
Harrigan, Ryan J. ;
Le Underwood, Vinh ;
Gibbs, H. Lisle ;
Smith, Thomas B. ;
Ruegg, Kristen .
SCIENCE, 2018, 359 (6371) :83-+
[5]   Spatial Population Genetics: It's About Time [J].
Bradburd, Gideon S. ;
Ralph, Peter L. .
ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS, VOL 50, 2019, 50 :427-449
[6]   Genomic Prediction of (Mal)Adaptation Across Current and Future Climatic Landscapes [J].
Capblancq, Thibaut ;
Fitzpatrick, Matthew C. ;
Bay, Rachael A. ;
Exposito-Alonso, Moises ;
Keller, Stephen R. .
ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS, VOL 51, 2020, 2020, 51 :245-269
[7]   Landscape genomics of Colorado potato beetle provides evidence of polygenic adaptation to insecticides [J].
Crossley, Michael S. ;
Chen, Yolanda H. ;
Groves, Russell L. ;
Schoville, Sean D. .
MOLECULAR ECOLOGY, 2017, 26 (22) :6284-6300
[8]   Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States [J].
Daly, Christopher ;
Halbleib, Michael ;
Smith, Joseph I. ;
Gibson, Wayne P. ;
Doggett, Matthew K. ;
Taylor, George H. ;
Curtis, Jan ;
Pasteris, Phillip P. .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2008, 28 (15) :2031-2064
[9]  
Elith J., 2017, R Documentation, P1
[10]   Utility of computer simulations in landscape genetics [J].
Epperson, Bryan K. ;
McRae, Brad H. ;
Scribner, Kim ;
Cushman, Samuel A. ;
Rosenberg, Michael S. ;
Fortin, Marie-Josee ;
James, Patrick M. A. ;
Murphy, Melanie ;
Manel, Stephanie ;
Legendre, Pierre ;
Dale, Mark R. T. .
MOLECULAR ECOLOGY, 2010, 19 (17) :3549-3564