State-Of-Charge Estimation for Lithium-Ion Battery Using Improved DUKF Based on State-Parameter Separation

被引:13
|
作者
Yu, Chuan-Xiang [1 ]
Xie, Yan-Min [1 ]
Sang, Zhao-Yu [1 ]
Yang, Shi-Ya [1 ]
Huang, Rui [1 ]
机构
[1] Chong Qing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400030, Peoples R China
关键词
lithium-ion batteries; SoC estimation; state-parameter separation; improved dual unscented Kalman filter; MANAGEMENT-SYSTEMS; ONLINE ESTIMATION; PART; PACKS; SOC;
D O I
10.3390/en12214036
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
State-of-charge estimation and on-line model modification of lithium-ion batteries are more urgently required because of the great impact of the model accuracy on the algorithm performance. This study aims to propose an improved DUKF based on the state-parameter separation. Its characteristics include: (1) State-Of-Charge (SoC) is treated as the only state variable to eliminate the strong correlation between state and parameters. (2) Two filters are ranked to run the parameter modification only when the state estimation has converged. First, the double polarization (DP) model of battery is established, and the parameters of the model are identified at both the pulse discharge and long discharge recovery under Hybrid Pulse Power Characterization (HPPC) test. Second, the implementation of the proposed algorithm is described. Third, combined with the identification results, the study elaborates that it is unreliable to use the predicted voltage error of closed-loop algorithm as the criterion to measure the accuracy of the model, while the output voltage obtained by the open-loop model with dynamic parameters can reflect the real situation. Finally, comparative experiments are designed under HPPC and DST conditions. Results show that the proposed state-parameter separated IAUKF-UKF has higher SoC estimation accuracy and better stability than traditional DUKF.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] State-of-Charge Estimation of Lithium-Ion Batteries in the Battery Degradation Process Based on Recurrent Neural Network
    Li, Shuqing
    Ju, Chuankun
    Li, Jianliang
    Fang, Ri
    Tao, Zhifei
    Li, Bo
    Zhang, Tingting
    ENERGIES, 2021, 14 (02)
  • [32] State-of-charge estimation for lithium-ion battery using the Gauss-Hermite particle filter technique
    Li, Bin
    Peng, Kai
    Li, Guidan
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2018, 10 (01)
  • [33] An unscented kalman filtering method for estimation of state-of-charge of lithium-ion battery
    Guo, Jishu
    Liu, Shulin
    Zhu, Rui
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [34] Combined CNN-LSTM Network for State-of-Charge Estimation of Lithium-Ion Batteries
    Song, Xiangbao
    Yang, Fangfang
    Wang, Dong
    Tsui, Kwok-Leung
    IEEE ACCESS, 2019, 7 : 88894 - 88902
  • [35] A Method of State-of-Charge Estimation for EV Power Lithium-Ion Battery Using a Novel Adaptive Extended Kalman Filter
    He, Zhicheng
    Yang, Ziming
    Cui, Xiangyu
    Li, Eric
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 14618 - 14630
  • [36] State of Charge Estimation for Lithium-Ion Battery with a Temperature-Compensated Model
    Yang, Shichun
    Deng, Cheng
    Zhang, Yulong
    He, Yongling
    ENERGIES, 2017, 10 (10):
  • [37] State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF
    Charkhgard, Mohammad
    Farrokhi, Mohammad
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (12) : 4178 - 4187
  • [38] State-of-charge estimation of lithium-ion batteries based on multiple filters method
    Wang, Yujie
    Zhang, Chenbin
    Chen, Zonghai
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 2635 - 2640
  • [39] State-of-Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Deep Neural Network
    Premkumar, M.
    Sowmya, R.
    Sridhar, S.
    Kumar, C.
    Abbas, Mohamed
    Alqahtani, Malak S.
    Nisar, Kottakkaran Sooppy
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 6289 - 6306
  • [40] A novel fractional order model based state-of-charge estimation method for lithium-ion battery
    Mu, Hao
    Xiong, Rui
    Zheng, Hongfei
    Chang, Yuhua
    Chen, Zeyu
    APPLIED ENERGY, 2017, 207 : 384 - 393