RUL Prediction for Lithium Batteries Using a Novel Ensemble Learning Method

被引:14
|
作者
Wu, Jiaju [1 ,2 ]
Kong, Linggang [2 ]
Cheng, Zheng [2 ]
Yang, Yonghui [2 ]
Zuo, Hongfu [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Civil Aviat, Nanjing 210016, Peoples R China
[2] China Acad Engn Phys, Inst Comp Applicat, Mianyang 621900, Sichuan, Peoples R China
关键词
PHM; RUL; Lithium-Ion batteries; Ensemble learning; GA; USEFUL LIFE PREDICTION;
D O I
10.1016/j.egyr.2022.10.298
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The remaining useful life (RUL) is the key element of fault diagnosis, prediction and health management (PHM) during the equipment operation service period. The prediction result of RUL is the premise for equipment to adopt preventive maintenance, condition-based maintenance, fault maintenance and other maintenance strategies. Lithium battery is an important energy component of new energy vehicles, mobile phones, etc. Its RUL is related to the state of its equipment system. Many model-based methods have been used to predict the lithium batteries' RUL, and some studies have begun to use lithium battery monitoring data to predict its remaining service life. With the continuous detection and monitoring capability of equipment throughout its life cycle gradually improved, a large number of monitoring and detection data promote the wide application of data-driven residual life prediction in the field of equipment. At present, the data-driven prediction method of the lithium batteries' RUL mostly adopts a single time-series forecasting model. The robustness and generalization of the prediction method are insufficient. It needs to be further improved to improve the prediction accuracy and robustness. Preventive maintenance measures shall be taken immediately according to the prediction results to ensure the effective supply of energy at any time. In this paper, an integrated learning algorithm based on monitoring data is proposed to fit the degradation model of lithium batteries and predict their RUL. The ensemble learning method consists of 5 basic learners to achieve better prediction performance, including relevance vector machine (RVM), random forest (RF), elastic net (EN), autoregressive model (AR), and long shortterm memory (LSTM) Network. The genetic algorithm (GA) is used in the ensemble learning method to find and determine the optimal weights of the basic learners, and obtain the final prediction result of lithium batteries. Then, the simulation is carried out on the CS2_35 lithium battery data set. The simulation results show that the method proposed in this paper has a smaller Root Mean Square Error (RMSE) than another 5 single methods. The RMSE is respectively 0.00744 for RVM, 0.01097 for RF, 0.01507 for EN, 0.03223 for AR, 0.01541 for LSTM, and 0.00483 for ensemble learning, and the RMSE of ensemble learning is reduced by 0.0274 at the highest and 0.00261 at the lowest, so the ensemble learning algorithm has better robustness and generalization effect. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:313 / 326
页数:14
相关论文
共 50 条
  • [41] A Multiparameter RUL Prediction Method for UAV Lithium-Ion Battery Based on Physical Information
    Pan, Dawei
    Wen, Yuxuan
    Du, Yuhang
    Song, Yuchen
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 30869 - 30882
  • [42] A Novel Hybrid Approach for Remaining Useful Life (RUL) and Short-Term Capacity Prediction of Batteries
    Senthilkumar, D.
    Vijayakumar, K.
    IETE JOURNAL OF RESEARCH, 2024, 70 (11) : 8192 - 8201
  • [43] RUL Prediction of Lithium-Ion Battery Based on Improved DGWO-ELM Method in a Random Discharge Rates Environment
    Zhu, Jun
    Tan, Tianxiong
    Wu, Lifeng
    Yuan, Huimei
    IEEE ACCESS, 2019, 7 : 125176 - 125187
  • [44] Prediction of gully erosion susceptibility mapping using novel ensemble machine learning algorithms
    Arabameri, Alireza
    Pal, Subodh Chandra
    Costache, Romulus
    Saha, Asish
    Rezaie, Fatemeh
    Danesh, Amir Seyed
    Pradhan, Biswajeet
    Lee, Saro
    Nhat-Duc Hoang
    GEOMATICS NATURAL HAZARDS & RISK, 2021, 12 (01) : 469 - 498
  • [45] Ensemble learning method for the prediction of breast cancer recurrence
    Almuhaidib, Daad Abdullah
    Shaiba, Hadil Ahmed
    Alharbi, Najla Ghazi
    Alotaibi, Sara Muhammad
    Albusayyis, Fatima Moteb
    Alzaid, Mashael Abdulalim
    Almadhi, Reem Mohammed
    2018 1ST INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS & INFORMATION SECURITY (ICCAIS' 2018), 2018,
  • [46] A Novel Multi-Model Stacking Ensemble Learning Method for Metro Traction Energy Prediction
    Lin, Shan
    Nong, Xingzhong
    Luo, Jianqiang
    Wang, Chen'en
    IEEE ACCESS, 2022, 10 : 129231 - 129244
  • [47] Prediction of Traffic Incident Duration Using Clustering-Based Ensemble Learning Method
    Zhao, Hui
    Gunardi, Willy
    Liu, Yang
    Kiew, Christabel
    Teng, Teck-Hou
    Yang, Xiao Bo
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2022, 148 (07)
  • [48] Prediction of Promotors in Agrobacterium and Klebsiella Using Novel Feature Engineering and Ensemble Learning Approach
    Samee, Nagwan Abdel
    Talaat, Rawan
    Raza, Ali
    Shaiba, Hadil
    Meshoul, Souham
    IEEE ACCESS, 2025, 13 : 42116 - 42128
  • [49] An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator
    Cao, Mengda
    Zhang, Tao
    Liu, Yajie
    Zhang, Yajun
    Wang, Yu
    Li, Kaiwen
    ENERGY, 2022, 257
  • [50] A Lithium-Ion Battery Capacity and RUL Prediction Fusion Method Based on Decomposition Strategy and GRU
    Liu, Huihan
    Li, Yanmei
    Luo, Laijin
    Zhang, Chaolong
    BATTERIES-BASEL, 2023, 9 (06):