RUL Prediction for Lithium Batteries Using a Novel Ensemble Learning Method

被引:14
|
作者
Wu, Jiaju [1 ,2 ]
Kong, Linggang [2 ]
Cheng, Zheng [2 ]
Yang, Yonghui [2 ]
Zuo, Hongfu [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Civil Aviat, Nanjing 210016, Peoples R China
[2] China Acad Engn Phys, Inst Comp Applicat, Mianyang 621900, Sichuan, Peoples R China
关键词
PHM; RUL; Lithium-Ion batteries; Ensemble learning; GA; USEFUL LIFE PREDICTION;
D O I
10.1016/j.egyr.2022.10.298
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The remaining useful life (RUL) is the key element of fault diagnosis, prediction and health management (PHM) during the equipment operation service period. The prediction result of RUL is the premise for equipment to adopt preventive maintenance, condition-based maintenance, fault maintenance and other maintenance strategies. Lithium battery is an important energy component of new energy vehicles, mobile phones, etc. Its RUL is related to the state of its equipment system. Many model-based methods have been used to predict the lithium batteries' RUL, and some studies have begun to use lithium battery monitoring data to predict its remaining service life. With the continuous detection and monitoring capability of equipment throughout its life cycle gradually improved, a large number of monitoring and detection data promote the wide application of data-driven residual life prediction in the field of equipment. At present, the data-driven prediction method of the lithium batteries' RUL mostly adopts a single time-series forecasting model. The robustness and generalization of the prediction method are insufficient. It needs to be further improved to improve the prediction accuracy and robustness. Preventive maintenance measures shall be taken immediately according to the prediction results to ensure the effective supply of energy at any time. In this paper, an integrated learning algorithm based on monitoring data is proposed to fit the degradation model of lithium batteries and predict their RUL. The ensemble learning method consists of 5 basic learners to achieve better prediction performance, including relevance vector machine (RVM), random forest (RF), elastic net (EN), autoregressive model (AR), and long shortterm memory (LSTM) Network. The genetic algorithm (GA) is used in the ensemble learning method to find and determine the optimal weights of the basic learners, and obtain the final prediction result of lithium batteries. Then, the simulation is carried out on the CS2_35 lithium battery data set. The simulation results show that the method proposed in this paper has a smaller Root Mean Square Error (RMSE) than another 5 single methods. The RMSE is respectively 0.00744 for RVM, 0.01097 for RF, 0.01507 for EN, 0.03223 for AR, 0.01541 for LSTM, and 0.00483 for ensemble learning, and the RMSE of ensemble learning is reduced by 0.0274 at the highest and 0.00261 at the lowest, so the ensemble learning algorithm has better robustness and generalization effect. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:313 / 326
页数:14
相关论文
共 50 条
  • [1] RUL Prediction of Lithium-ion Batteries using a Federated and Homomorphically Encrypted Learning Method
    Lopez, Victor
    Fontenla-Romero, Oscar
    Hernandez-Pereira, Elena
    Guijarro-Berdinas, Bertha
    Blanco-Seijo, Carlos
    Fernandez-Paz, Samuel
    39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 565 - 571
  • [2] RUL Prediction Method for Lithium-Ion Batteries Based on the SOA-ELM Algorithm
    Meng, Xiangdong
    Zhang, Haifeng
    Li, Dexin
    Dong, Yunchang
    Zhang, Jiajun
    Cao, Xinyu
    Li, Gang
    ENGINEERING REPORTS, 2025, 7 (03)
  • [3] Online Fault Tolerant RUL Prediction Strategy for Lithium-Ion Batteries Using Machine Learning
    Zraibi, Brahim
    Mansouri, Mohamed
    Okar, Chafik
    Chaoui, Hicham
    IEEE ACCESS, 2025, 13 : 55727 - 55739
  • [4] RUL prediction of lithium batteries based on DLUKF algorithm
    Tang, Ting
    Yuan, Hui-Mei
    Zhu, Jun
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 1756 - 1761
  • [5] A deep learning framework for the joint prediction of the SOH and RUL of lithium-ion batteries based on bimodal images
    Cai, Nian
    Que, Xiaoping
    Zhang, Xu
    Feng, Weiguo
    Zhou, Yinghong
    ENERGY, 2024, 302
  • [6] A novel RUL prediction method for Lithium-ion Batteries via hybrid modeling and BAS based particle filter
    He, Ning
    Qian, Cheng
    Li, Ruoxia
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6710 - 6715
  • [7] A novel ensemble learning model for state of health estimation of lithium-ion batteries
    Zeng, Chuxi
    Xu, Cheng
    Li, Haomiao
    Wang, Kangli
    JOURNAL OF POWER SOURCES, 2025, 638
  • [8] A coarse-to-fine ensemble method for capacity prediction of lithium-ion batteries in production
    Zhang, Guocui
    Zhang, Changlun
    He, Qiang
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (15) : 3538 - 3552
  • [9] Prediction of Taxi Destinations Using a Novel Data Embedding Method and Ensemble Learning
    Zhang, Xiaocai
    Zhao, Zhixun
    Zheng, Yi
    Li, Jinyan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (01) : 68 - 78
  • [10] Novel Image-Based Rapid RUL Prediction for Li-Ion Batteries Using a Capsule Network and Transfer Learning
    Couture, Jonathan
    Lin, Xianke
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2023, 9 (01) : 958 - 967