Nanoindentation response of nanocrystalline copper via molecular dynamics: Grain-size effect

被引:53
|
作者
Li, Jiejie [1 ]
Lu, Binbin [1 ]
Zhang, Yuhang [1 ]
Zhou, Hongjian [1 ]
Hu, Guoming [1 ]
Xia, Re [1 ,2 ]
机构
[1] Wuhan Univ, Minist Educ, Key Lab Hydraul Machinery Transients, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Waterjet Theory & New Technol, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanocrystalline copper; Grain-size effect; Mechanical behaviors; Nanoindentation; Molecular dynamics; HALL-PETCH RELATIONSHIP; MECHANICAL-PROPERTIES; DEFORMATION; BEHAVIOR; INDENTATION; SIMULATIONS; CU; COMPRESSION; CROSSOVER; PLATINUM;
D O I
10.1016/j.matchemphys.2019.122391
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper is aimed at investigating the mechanical properties and deformation mechanisms of nanocrystalline copper under nanoindentation. The Voronoi tessellation method is adopted to generate nanocrystalline structures with stochastic grain orientations that mimic those in experiments. Grain-size effect is studied and discussed via molecular dynamics simulations. The results reveal the inversion of Hall-Petch relation about hardness at a grain size of 15.1 rim, which agrees well with previous works in tension. Below the critical grain size, grain boundary sliding, grain growth and grain rotation are easily observed. Grain boundary motion is the dominant deformation with smaller grain size below 15.1 nm while dislocation motion dominates above the critical value. It is noteworthy that the elastic recovery in indentation direction, increases with larger grain size and mono-crystalline copper behaves with the strongest elastic recovery. The study further reveals the deformation mechanism of nanocrystalline copper under nanoindentation and accelerates the functional applications of nanocrystalline materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Molecular dynamics simulation of mechanical properties of nanocrystalline platinum: Grain-size and temperature effects
    Li, Jiejie
    Lu, Binbin
    Zhou, Hongjian
    Tian, Chenyao
    Xian, Yuehui
    Hu, Guoming
    Xia, Re
    PHYSICS LETTERS A, 2019, 383 (16) : 1922 - 1928
  • [2] Molecular Dynamics Study of Grain Size and Strain Rate Dependent Tensile Properties of Nanocrystalline Copper
    Xiang, Meizhen
    Cui, Junzhi
    Tian, Xia
    Chen, Jun
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (05) : 1215 - 1221
  • [3] Study of the effects of grain size on the mechanical properties of nanocrystalline copper using molecular dynamics simulation with initial realistic samples
    Rida, A.
    Rouhaud, E.
    Makke, A.
    Micoulaut, M.
    Mantisi, B.
    PHILOSOPHICAL MAGAZINE, 2017, 97 (27) : 2387 - 2405
  • [4] Effect of Grain-Size in Nanocrystalline Tungsten on Hardness and Dislocation Density: A Molecular Dynamics Study
    Karafi, Toufik
    Tahiri, Abdellah
    Chabba, Hanae
    Idiri, Mohamed
    Boubeker, Brahim
    CRYSTALS, 2023, 13 (03)
  • [5] Grain Size Dependence of Creep in Nanocrystalline Copper by Molecular Dynamics
    Wang, Yun-Jiang
    Ishii, Akio
    Ogata, Shigenobu
    MATERIALS TRANSACTIONS, 2012, 53 (01) : 156 - 160
  • [6] Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics
    Zhou, Kai
    Liu, Bin
    Yao, Yijun
    Zhong, Kun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 615 : 92 - 97
  • [7] A Study on Size Effect of Indenter in Nanoindentation via Molecular Dynamics Simulation
    Zhang, Lin
    Zhao, Hongwei
    Ma, Zhichao
    Huang, Hu
    Geng, Chunyang
    Ma, Zhichao
    MICRO-NANO TECHNOLOGY XIV, PTS 1-4, 2013, 562-565 : 802 - 808
  • [8] Temperature and grain size dependences of mechanical properties of nanocrystalline copper by molecular dynamics simulation
    Chen, Pei
    Zhang, Zhiwei
    Liu, Chenshuo
    An, Tong
    Yu, Huiping
    Qin, Fei
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2019, 27 (06)
  • [9] Examination of critical grain size of isotropic nanocrystalline iron through molecular dynamics analysis
    Handrigan, Stephen M.
    Nakhla, Sam
    MOLECULAR SIMULATION, 2022, 48 (11) : 976 - 990
  • [10] Effects of grain size and temperature on mechanical response of nanocrystalline copper
    Fang, Te-Hua
    Huang, Chao-Chun
    Chiang, Tsung-Cheng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 671 : 1 - 6