Nonclassical Lie symmetry and conservation laws of the nonlinear time-fractional Korteweg-de Vries equation

被引:9
作者
Hashemi, Mir Sajjad [1 ]
Haji-Badali, Ali [1 ]
Alizadeh, Farzaneh [1 ]
Inc, Mustafa [2 ,3 ,4 ]
机构
[1] Univ Bonab, Basic Sci Fac, Dept Math, POB 55513-95133, Bonab, Iran
[2] Biruni Univ, Dept Comp Engn, Istanbul, Turkey
[3] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkey
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
fractional equation; Lie symmetry analysis; classical and non-classical symmetries; WAVES; REDUCTIONS; DISPERSION;
D O I
10.1088/1572-9494/ac09df
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we use the symmetry of the Lie group analysis as one of the powerful tools that deals with the wide class of fractional order differential equations in the Riemann-Liouville concept. In this study, first, we employ the classical and nonclassical Lie symmetries (LS) to acquire similarity reductions of the nonlinear fractional far field Korteweg-de Vries (KdV) equation, and second, we find the related exact solutions for the derived generators. Finally, according to the LS generators acquired, we construct conservation laws for related classical and nonclassical vector fields of the fractional far field KdV equation.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Provable bounds for the Korteweg-de Vries reduction in multi-component nonlinear Schrodinger equation
    Swarup, Swetlana
    Vasan, Vishal
    Kulkarni, Manas
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (13)
  • [42] Computer Simulation System for Nonlinear Processes Described By the Korteweg-de Vries-Burgers Equation
    Hariachevska, I. V.
    Protektor, D. O.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2021, 57 (06) : 998 - 1007
  • [43] A SINGULAR LIMIT PROBLEM FOR CONSERVATION LAWS RELATED TO THE KAWAHARA-KORTEWEG-DE VRIES EQUATION
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    NETWORKS AND HETEROGENEOUS MEDIA, 2016, 11 (02) : 281 - 300
  • [44] Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise
    de Bouard, Anne
    Debussche, Arnaud
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 1727 - 1744
  • [45] Numerical solution of the complex modified Korteweg-de Vries equation by DQM
    Bashan, Ali
    Ucar, Yusuf
    Yagmurlu, N. Murat
    Esen, Alaattin
    INTERNATIONAL CONFERENCE ON QUANTUM SCIENCE AND APPLICATIONS (ICQSA-2016), 2016, 766
  • [46] ON THE BACKGROUND OF LIMIT PASS FOR KORTEWEG-DE VRIES EQUATION AS THE DISPERSION VANISHES
    GALKIN, VA
    RUSSKIKH, VV
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 307 - 314
  • [47] Observation of the inverse energy cascade in the modified Korteweg-de Vries equation
    Dutykh, D.
    Tobisch, E.
    EPL, 2014, 107 (01)
  • [48] Parametrix problem for the Korteweg-de Vries equation with steplike initial data
    Piorkowski, Mateusz
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 372 : 280 - 314
  • [49] Central Discontinuous Galerkin Methods for the Generalized Korteweg-de Vries Equation
    Jiao, Mengjiao
    Cheng, Yingda
    Liu, Yong
    Zhang, Mengping
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (03) : 927 - 966
  • [50] Residual symmetries of the modified Korteweg-de Vries equation and its localization
    Liu, Ping
    Li, Biao
    Yang, Jian-Rong
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2014, 12 (08): : 541 - 553