Nonclassical Lie symmetry and conservation laws of the nonlinear time-fractional Korteweg-de Vries equation

被引:9
作者
Hashemi, Mir Sajjad [1 ]
Haji-Badali, Ali [1 ]
Alizadeh, Farzaneh [1 ]
Inc, Mustafa [2 ,3 ,4 ]
机构
[1] Univ Bonab, Basic Sci Fac, Dept Math, POB 55513-95133, Bonab, Iran
[2] Biruni Univ, Dept Comp Engn, Istanbul, Turkey
[3] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkey
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
fractional equation; Lie symmetry analysis; classical and non-classical symmetries; WAVES; REDUCTIONS; DISPERSION;
D O I
10.1088/1572-9494/ac09df
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we use the symmetry of the Lie group analysis as one of the powerful tools that deals with the wide class of fractional order differential equations in the Riemann-Liouville concept. In this study, first, we employ the classical and nonclassical Lie symmetries (LS) to acquire similarity reductions of the nonlinear fractional far field Korteweg-de Vries (KdV) equation, and second, we find the related exact solutions for the derived generators. Finally, according to the LS generators acquired, we construct conservation laws for related classical and nonclassical vector fields of the fractional far field KdV equation.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Periodic and rational solutions of modified Korteweg-de Vries equation
    Chowdury, Amdad
    Ankiewicz, Adrian
    Akhmediev, Nail
    EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (05) : 1 - 7
  • [32] Effect of Coriolis constant on Geophysical Korteweg-de Vries equation
    Karunakar, P.
    Chakraverty, S.
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2019, 4 (02) : 113 - 121
  • [33] An efficient method for analyzing the solutions of the Korteweg-de Vries equation
    Al-Refai, Mohammed
    Syam, Muhammed
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (11) : 3825 - 3832
  • [34] Large time asymptotics for the modified Korteweg-de Vries-Benjamin-Ono equation
    Hayashi, Nakao
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 247
  • [35] Lie symmetry analysis, explicit solutions and conservation laws for the time fractional Kolmogorov-Petrovskii-Piskunov equation
    Zhou, Xuan
    Shan, Wenrui
    Niu, Zhilei
    Xiao, Pengcheng
    Wang, Ying
    WAVES IN RANDOM AND COMPLEX MEDIA, 2020, 30 (03) : 514 - 529
  • [36] Invariant Solutions and Conservation Laws of the Time-Fractional Telegraph Equation
    Najafi, Ramin
    Celik, Ercan
    Uyanik, Neslihan
    ADVANCES IN MATHEMATICAL PHYSICS, 2023, 2023
  • [37] Lie Symmetry Analysis, Analytical Solution, and Conservation Laws of a Sixth-Order Generalized Time-Fractional Sawada-Kotera Equation
    Wang, Yuhang
    Li, Lianzhong
    SYMMETRY-BASEL, 2019, 11 (12):
  • [38] Dark Solitons for a Generalized Korteweg-de Vries Equation with Time-Dependent Coefficients
    Triki, Houria
    Wazwaz, Abdul-Majid
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (3-4): : 199 - 204
  • [39] Soliton management for a variable-coefficient modified Korteweg-de Vries equation
    Sun, Zhi-Yuan
    Gao, Yi-Tian
    Liu, Ying
    Yu, Xin
    PHYSICAL REVIEW E, 2011, 84 (02):
  • [40] LONG-TIME ASYMPTOTIC BEHAVIOR FOR AN EXTENDED MODIFIED KORTEWEG-DE VRIES EQUATION
    Liu, Nan
    Guo, Boling
    Wang, Dengshan
    Wang, Yupeng
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (07) : 1877 - 1913