Acceleration and sensitivity analysis of lattice kinetic Monte Carlo simulations using parallel processing and rate constant rescaling

被引:26
|
作者
Nunez, M. [1 ]
Robie, T. [1 ]
Vlachos, D. G. [1 ]
机构
[1] Univ Delaware, Dept Chem & Biomol Engn, Newark, DC 19716 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2017年 / 147卷 / 16期
关键词
GAS SHIFT REACTION; STOCHASTIC CHEMICAL-KINETICS; RATE-DETERMINING STEP; OVERCOMING STIFFNESS; PARTIAL EQUILIBRIUM; GRADIENT ESTIMATION; REACTING SYSTEMS; CO OXIDATION; ALGORITHM; CATALYSTS;
D O I
10.1063/1.4998926
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kinetic Monte Carlo (KMC) simulation provides insights into catalytic reactions unobtainable with either experiments or mean-field microkinetic models. Sensitivity analysis of KMC models assesses the robustness of the predictions to parametric perturbations and identifies rate determining steps in a chemical reaction network. Stiffness in the chemical reaction network, a ubiquitous feature, demands lengthy run times for KMC models and renders efficient sensitivity analysis based on the likelihood ratio method unusable. We address the challenge of efficiently conducting KMC simulations and performing accurate sensitivity analysis in systems with unknown time scales by employing two acceleration techniques: rate constant rescaling and parallel processing. We develop statistical criteria that ensure sufficient sampling of non-equilibrium steady state conditions. Our approach provides the twofold benefit of accelerating the simulation itself and enabling likelihood ratio sensitivity analysis, which provides further speedup relative to finite difference sensitivity analysis. As a result, the likelihood ratio method can be applied to real chemistry. We apply our methodology to the water-gas shift reaction on Pt(111). Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] In-silico analysis on biofabricating vascular networks using kinetic Monte Carlo simulations
    Sun, Yi
    Yang, Xiaofeng
    Wang, Qi
    BIOFABRICATION, 2014, 6 (01)
  • [42] Application of parallel processing methods in Monte Carlo simulations of molecular clusters.
    Jordan, KD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U428 - U429
  • [43] Sensitivity and Uncertainty Analysis of a SCWR from Monte Carlo Simulations
    Espinosa-Martinez, E. -G.
    Martin-del-Campo, C.
    Francois, J. L.
    Quezada-Garcia, S.
    Vazquez-Rodriguez, A.
    Espinosa-Paredes, G.
    PROCEEDINGS OF THE 20TH PACIFIC BASIN NUCLEAR CONFERENCE, VOL 1, 2017, : 239 - 252
  • [44] Sensitivity Analysis in Coupled Monte Carlo Radiation Transport Simulations
    Perfetti, Christopher
    Franke, Brian
    Kensek, Ron
    Olson, Aaron
    NUCLEAR SCIENCE AND ENGINEERING, 2024, 198 (02) : 300 - 310
  • [45] Cascade damage evolution: rate theory versus kinetic Monte Carlo simulations
    Ortiz, C. J.
    Caturla, M. J.
    JOURNAL OF COMPUTER-AIDED MATERIALS DESIGN, 2007, 14 : 171 - 181
  • [46] Kinetic Lattice Monte Carlo Simulations of Vacancy Diffusion in Silicon Below the Melting Point
    Kang, Jeong-Won
    Kwon, Oh Kuen
    Lee, Sangkil
    Lee, Sang Hun
    Kim, Do Hyun
    Hwang, Ho-Jung
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2010, 7 (03) : 604 - 611
  • [47] Libraries and Development Environments for Monte Carlo Simulations of Lattice Gauge Theories on Parallel Computers
    Decker, K. M.
    Jayewardena, C.
    Rebmann, R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1991, 2 (01): : 316 - 321
  • [48] Hybrid asynchronous algorithm for parallel kinetic Monte Carlo simulations of thin film growth
    Shim, Y
    Amar, JG
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (01) : 305 - 317
  • [49] Synchronous relaxation algorithm for parallel kinetic Monte Carlo simulations of thin film growth
    Merrick, Michael
    Fichthorn, Kristen A.
    PHYSICAL REVIEW E, 2007, 75 (01):
  • [50] Massively parallel kinetic Monte Carlo simulations of charge carrier transport in organic semiconductors
    van der Kaap, N. J.
    Koster, L. J. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 307 : 321 - 332