Numerical computation of the Riemann zeta function and prime counting function by using Gauss-Hermite and Gauss-Laguerre quadratures

被引:1
作者
Babolian, E. [1 ]
Hajikandi, A. Arzhang [1 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Dept Math, Tehran, Iran
关键词
Gauss-Laguerre quadrature; Gauss-Hermite quadrature; Riemann zeta function; prime counting function; prime numbers;
D O I
10.1080/00207160903082371
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we transform (s) to appropriate integral forms and for numerical computing of these integrals, we introduce a method based on Gauss-Hermite and Gauss-Laguerre quadratures. By using the zeta function, we compute the prime counting function (x) numerically. Some relations are new and three examples are given to show the good accuracy of the method.
引用
收藏
页码:3420 / 3429
页数:10
相关论文
共 12 条
[1]   Computational strategies for the Riemann zeta function [J].
Borwein, JM ;
Bradley, DM ;
Crandall, RE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 121 (1-2) :247-296
[2]  
BRUCE B, 1994, RAMANUJANS NOTEBOO 4, P126
[3]   Series involving the Zeta function and multiple Gamma functions [J].
Choi, JS ;
Cho, YJ ;
Srivastava, HM .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (02) :509-537
[4]   An Euler-type formula for ζ(2k+1) [J].
Dancs, MJ ;
He, TX .
JOURNAL OF NUMBER THEORY, 2006, 118 (02) :192-199
[5]  
FINCH SR, 2003, MATH CONSTANTS, P423
[6]  
HARDY GH, 1975, INTRO THEORY NUMBERS, P245
[7]  
Ivic A., 1985, The Riemann Zeta-Function
[8]  
RALSTON A, 1982, 1 COURSE NUMERICAL A
[9]  
RIBENBOIM P, 1996, NEW BOOK PRIME NUMBE, P213
[10]   Further series representations for ζ(2n+1) [J].
Srivastava, HM .
APPLIED MATHEMATICS AND COMPUTATION, 1998, 97 (01) :1-15