UNBIASED MONTE CARLO ESTIMATE OF STOCHASTIC DIFFERENTIAL EQUATIONS EXPECTATIONS

被引:8
|
作者
Doumbia, Mahamadou [1 ,2 ]
Oudjane, Nadia [1 ,2 ]
Warin, Xavier [1 ,2 ]
机构
[1] EDF R&D, 7 Blvd Gaspard Monge, F-91120 Palaiseau, France
[2] FiME, Lab Finance Marches Energie, 7 Blvd Gaspard Monge, F-91120 Palaiseau, France
关键词
Unbiased estimate; linear parabolic PDEs; interacting particle systems; EXACT SIMULATION;
D O I
10.1051/ps/2017001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an unbiased Monte Carlo method to compute E(g(X-T)) where g is a Lipschitz function and X an Ito process. This approach extends the method proposed in [16] to the case where X is solution of a multidimensional stochastic differential equation with varying drift and diffusion coefficients. A variance reduction method relying on interacting particle systems is also developed.
引用
收藏
页码:56 / 87
页数:32
相关论文
共 50 条
  • [31] Biases and Statistical Errors in Monte Carlo Burnup Calculations: An Unbiased Stochastic Scheme to Solve Boltzmann/Bateman Coupled Equations
    Dumonteil, E.
    Diop, C. M.
    NUCLEAR SCIENCE AND ENGINEERING, 2011, 167 (02) : 165 - 170
  • [32] Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations
    Bouchard, B
    Touzi, N
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 111 (02) : 175 - 206
  • [33] Multi-level Monte Carlo methods for the approximation of invariant measures of stochastic differential equations
    Michael B. Giles
    Mateusz B. Majka
    Lukasz Szpruch
    Sebastian J. Vollmer
    Konstantinos C. Zygalakis
    Statistics and Computing, 2020, 30 : 507 - 524
  • [34] Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance
    An, Dong
    Linden, Noah
    Liu, Jin-Peng
    Montanaro, Ashley
    Shao, Changpeng
    Wang, Jiasu
    QUANTUM, 2021, 5
  • [35] Multi-level Monte Carlo methods for the approximation of invariant measures of stochastic differential equations
    Giles, Michael B.
    Majka, Mateusz B.
    Szpruch, Lukasz
    Vollmer, Sebastian J.
    Zygalakis, Konstantinos C.
    STATISTICS AND COMPUTING, 2020, 30 (03) : 507 - 524
  • [36] Monte-Carlo simulation of a stochastic differential equation
    Arif ULLAH
    Majid KHAN
    M KAMRAN
    R KHAN
    盛正卯
    Plasma Science and Technology, 2017, 19 (12) : 10 - 18
  • [37] Monte-Carlo simulation of a stochastic differential equation
    Ullah, Arif
    Khan, Majid
    Kamran, M.
    Khan, R.
    Sheng, Zhengmao
    PLASMA SCIENCE & TECHNOLOGY, 2017, 19 (12)
  • [38] Spectrally refined unbiased Monte Carlo estimate of the Earth's global radiative cooling
    Nyffenegger-Pere, Yaniss
    Armante, Raymond
    Bati, Megane
    Blanco, Stephane
    Dufresne, Jean-Louis
    El Hafi, Mouna
    Eymet, Vincent
    Forest, Vincent
    Fournier, Richard
    Gautrais, Jacques
    Lebrun, Raphael
    Mellado, Nicolas
    Mourtaday, Nada
    Paulin, Mathias
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (05)
  • [39] Monte-Carlo simulation of a stochastic differential equation
    Arif ULLAH
    Majid KHAN
    M KAMRAN
    R KHAN
    盛正卯
    Plasma Science and Technology, 2017, (12) : 10 - 18
  • [40] Unbiased simulation of stochastic differential equations using parametrix expansions
    Andersson, Patrik
    Kohatsu-Higa, Arturo
    BERNOULLI, 2017, 23 (03) : 2028 - 2057