UNBIASED MONTE CARLO ESTIMATE OF STOCHASTIC DIFFERENTIAL EQUATIONS EXPECTATIONS

被引:8
|
作者
Doumbia, Mahamadou [1 ,2 ]
Oudjane, Nadia [1 ,2 ]
Warin, Xavier [1 ,2 ]
机构
[1] EDF R&D, 7 Blvd Gaspard Monge, F-91120 Palaiseau, France
[2] FiME, Lab Finance Marches Energie, 7 Blvd Gaspard Monge, F-91120 Palaiseau, France
关键词
Unbiased estimate; linear parabolic PDEs; interacting particle systems; EXACT SIMULATION;
D O I
10.1051/ps/2017001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an unbiased Monte Carlo method to compute E(g(X-T)) where g is a Lipschitz function and X an Ito process. This approach extends the method proposed in [16] to the case where X is solution of a multidimensional stochastic differential equation with varying drift and diffusion coefficients. A variance reduction method relying on interacting particle systems is also developed.
引用
收藏
页码:56 / 87
页数:32
相关论文
共 50 条
  • [1] Estimating the parameters of stochastic differential equations by Monte Carlo methods
    Hurn, AS
    Lindsay, KA
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1997, 43 (3-6) : 495 - 501
  • [2] MULTILEVEL MONTE CARLO FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH SMALL NOISE
    Anderson, David F.
    Higham, Desmond J.
    Sun, Yu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 505 - 529
  • [3] On quasi-Monte Carlo simulation of stochastic differential equations
    Hofmann, N
    Mathe, P
    MATHEMATICS OF COMPUTATION, 1997, 66 (218) : 573 - 589
  • [4] UNBIASED SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS
    Henry-Labordere, Pierre
    Tan, Xiaolu
    Touzi, Nizar
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (06): : 3305 - 3341
  • [5] Multilevel Monte Carlo for stochastic differential equations with additive fractional noise
    Peter E. Kloeden
    Andreas Neuenkirch
    Raffaella Pavani
    Annals of Operations Research, 2011, 189 : 255 - 276
  • [6] Multilevel Monte Carlo method for parabolic stochastic partial differential equations
    Barth, Andrea
    Lang, Annika
    Schwab, Christoph
    BIT NUMERICAL MATHEMATICS, 2013, 53 (01) : 3 - 27
  • [7] On a Monte Carlo scheme for some linear stochastic partial differential equations
    Nakagawa, Takuya
    Tanaka, Akihiro
    MONTE CARLO METHODS AND APPLICATIONS, 2021, 27 (02): : 169 - 193
  • [8] Multilevel Monte Carlo method for parabolic stochastic partial differential equations
    Andrea Barth
    Annika Lang
    Christoph Schwab
    BIT Numerical Mathematics, 2013, 53 : 3 - 27
  • [9] Multilevel Monte Carlo for stochastic differential equations with additive fractional noise
    Kloeden, Peter E.
    Neuenkirch, Andreas
    Pavani, Raffaella
    ANNALS OF OPERATIONS RESEARCH, 2011, 189 (01) : 255 - 276
  • [10] Multilevel Monte Carlo method with applications to stochastic partial differential equations
    Barth, Andrea
    Lang, Annika
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (18) : 2479 - 2498